• Title/Summary/Keyword: Fourier Transformation

Search Result 352, Processing Time 0.021 seconds

Buckling analysis of perforated nano/microbeams with deformable boundary conditions via nonlocal strain gradient elasticity

  • Ugur Kafkas;Yunus Unal;M. Ozgur Yayli;Busra Uzun
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.339-353
    • /
    • 2023
  • This work aims to present a solution for the buckling behavior of perforated nano/microbeams with deformable boundary conditions using nonlocal strain gradient theory (NLSGT). For the first time, a solution that can provide buckling loads based on the non-local and strain gradient effects of perforated nanostructures on an elastic foundation, while taking into account both deformable and rigid boundary conditions. Stokes' transformation and Fourier series are used to realize this aim and determine the buckling loads under various boundary conditions. We employ the NLSGT to account for size-dependent effects and utilize the Winkler model to formulate the elastic foundation. The buckling behavior of the perforated nano/microbeams restrained with lateral springs at both ends is studied for various parameters such as the number of holes, the length and filling ratio of the perforated beam, the internal length, the nonlocal parameter and the dimensionless foundation parameter. Our results indicate that the number of holes and filling ratio significantly affect the buckling response of perforated nano/microbeams. Increasing the filling ratio increases buckling loads, while increasing the number of holes decreases buckling loads. The effects of the non-local and internal length parameters on the buckling behavior of the perforated nano/microbeams are also discussed. These material length parameters have opposite effects on the variation of buckling loads. This study presents an effective eigenvalue solution based on Stokes' transformation and Fourier series of the restrained nano/microbeams under the effects of elastic medium, perforation parameters, deformable boundaries and nonlocal strain gradient elasticity for the first time.

Digital Watermarking of Medical Images (의료영상의 디지털 워터마킹)

  • Lee, Sang-Bock;Lee, Sam-Yol;Lee, Jun-Haeng
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.13-19
    • /
    • 2004
  • This study proposes how to insert a strong watermark creating a big change in the areas of edge and texture. While conversion by existing Fourier transformation can acquire information for all ranges of frequency domain from the image, Wavelet transformation can manipulate edge and texture area selectively. Therefore, through wavelet transformation concerned area may be selected and watermarks in copyright formation are inserted. Our proposed algorithm was compared to Xia's watermarking technique using wavelet transformation. Its fidelity and robustness were tested with attack methods used in existing papers and it turns out that the proposed algorithm using HVS properties is more superior to Xia's techniques.

  • PDF

Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis

  • Kim, Suk Weon;Min, Sung Ran;Kim, Jonghyun;Park, Sang Kyu;Kim, Tae Il;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • To determine whether pattern recognition based on metabolite fingerprinting for whole cell extracts can be used to discriminate cultivars metabolically, leaves and fruits of five commercial strawberry cultivars were subjected to Fourier transform infrared (FT-IR) spectroscopy. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA) and Fisher's linear discriminant function analysis. The dendrogram based on hierarchical clustering analysis of these spectral data separated the five commercial cultivars into two major groups with originality. The first group consisted of Korean cultivars including 'Maehyang', 'Seolhyang', and 'Gumhyang', whereas in the second group, 'Ryukbo' clustered with 'Janghee', both Japanese cultivars. The results from analysis of fruits were the same as of leaves. We therefore conclude that the hierarchical dendrogram based on PCA of FT-IR data from leaves represents the most probable chemotaxonomical relationship between cultivars, enabling discrimination of cultivars in a rapid and simple manner.

Reconfigurable Flight Control Law based on Model Following Scheme and Parameter Estimation (매개변수 추정 및 모델추종 적응제어기법을 이용한재형상 비행제어시스템 연구)

  • Mun, Gwan-Yeong;Kim, Yu-Dan;Lee, Han-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.67-73
    • /
    • 2006
  • In this paper, a reconfigurable model following flight control method is proposed based on direct adaptive scheme using parameter estimation. Adaptive control scheme updates the control gains to make the system output follow the reference output even when fault occurs. By adopting the frequency domain parameter estimation method, system changes by the fault can be estimated. Recursive Fourier transformation is used for system identification. Using recursive Fourier transform, the proposed adaptive control algorithm guarantees the system stability and improves the system characteristics. To evaluate the performance of proposed control method, numerical simulations are performed.

Fourier Series Expansion Method for Free Vibration Analysis of a Partially Liquid-Filled Circular Cylindrical Shell (Fourier 급수전걔를 이용한 부분적으로 유체가 채워진 원통형 셸의 고유진동 해석)

  • 정경훈;이성철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.163-175
    • /
    • 1994
  • An analytical method for nautral frequencies of a partially liquid- filled circular cylindrical shell with various boundary conditions is developed by means of the Stokes's transformation and Fourier series expansion on the basis of Sanders' shell equation. The liquid-shell coupled system is divided into two regions for convenient formulation. One is the empty shell region in which the Sanders' shell equations are formulated without the lipuid effect, the other is wetted shell region in which the shell equations are formulated with consideration of the liquid dynamic effect. The shell equations for each regions are combined by the geometry and the force continuities at the junction of the two regions. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in axial direction. The unknown parameters are selected to satisfy the boundary condition along the wetted shell surface. The natural frequencies of the liquid filled cylindraical shells with the clamped- free and the clamped-clamped boundary conditions examined in the previous works, are obtained by this analytical method. The results are compared with the previous works, and excllent agreement is found for the natural frequencies of the shells.

  • PDF

A Prony Method Based on Discrete Fourier Transform for Estimation- of Oscillation Mode in Power Systems (이산푸리에변환에 기초한 Prony 법과 전력계통의 진동모드 추정)

  • Nam Hae-Kon;Shim Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.293-305
    • /
    • 2005
  • This paper describes an improved Prony method in its speed, accuracy and reliability by efficiently determining the optimal sampling interval with use of DFT (discrete Fourier transformation). In the Prony method the computation time is dominated by the size of the linear prediction matrix, which is given by the number of data times the modeling order The size of the matrix in a general Prony method becomes large because of large number of data and so does the computation time. It is found that the Prony method produces satisfactory results when SNR is greater than three. The maximum sampling interval resulting minimum computation time is determined using the fact that the spectrum in DFT is inversely proportional to sampling interval. Also the process of computing the modes is made efficient by applying Hessenberg method to the companion matrix with complex shift and computing selectively only the dominant modes of interest. The proposed method is tested against the 2003 KEPCO system and found to be efficient and reliable. The proposed method may play a key role in monitoring in real time low frequency oscillations of power systems .

Fluid flow profile in the "orthotropic plate+compressible viscous fluid+rigid wall" system under the action of the moving load on the plate

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-309
    • /
    • 2020
  • The paper studies the fluid flow profile contained between the orthotropic plate and rigid wall under the action of the moving load on the plate and main attention is focused on the fluid velocity profile in the load moving direction. It is assumed that the plate material is orthotropic one and the fluid is viscous and barotropic compressible. The plane-strain state in the plate and the plane flow of the fluid is considered. The motion of the plate is described by utilizing the exact equations of elastodynamics for anisotropic bodies, however, the flow of the fluid by utilizing the linearized Navier-Stokes equations. For the solution of the corresponding boundary value problem, the moving coordinate system associated with the moving load is introduced, after which the exponential Fourier transformation is employed with respect to the coordinate which indicates the distance of the material points from the moving load. The exact analytical expressions for the Fourier transforms of the sought values are obtained, the originals of which are determined numerically. Presented numerical results and their analyses are focused on the question of how the moving load acting on the face plane of the plate which is not in the contact with the fluid can cause the fluid flow and what type profile has this flow along the thickness direction of the strip filled by the fluid and, finally, how this profile changes ahead and behind with the distance of the moving load.

Robust Watermarking in Medical Images Using by Polar Transformation (의료영상에서 Polar 변환을 적용한 강인한 워터마킹 기법)

  • 남기철;박무훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.379-385
    • /
    • 2004
  • Medical images are being managed more by PACS in general medical institutions. It is important to protect patients from being invaded their privacy related to the images. It is also necessary to confirm the ownership, the right of property of the medical images and notice whether the data are modified. In this paper, we propose a robust watermarking against RST attacks in medical images on the PACS. The proposed scheme modifies and improves Log-Polar Mapping and Fourier Mellin Transform in order to realize and recover serious image degradation and watermark data loss caused by the conversion between cartesian coordinate and log-polar coordinate. We used the radius and theta Look Up Table to solve the realization of the Fourier Mellin Transform, and inserted a watermark into 2D-DFT magnitudes using Spread Spectrum. Experimental results shows that this method are robust to rotation attack.

Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm

  • Zhang, Qiaodan;Hao, Kaixue;Li, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.495-513
    • /
    • 2020
  • The correlation identification of the subsurface is a novel electrical prospecting method which could suppress stochastic noise. This method is increasingly being utilized by geophysicists. It achieves the frequency response of the underground media through division of the cross spectrum of the input & output signal and the auto spectrum of the input signal. This is subject to the spectral leakage when the cross spectrum and the auto spectrum are computed from cross correlation and autocorrelation function by Discrete Fourier Transformation (DFT, "To obtain an accurate frequency response of the earth system, we propose an improved correlation identification method which uses all phase Fast Fourier Transform (APFFT) to acquire the cross spectrum and the auto spectrum. Simulation and engineering application results show that compared to existing correlation identification algorithm the new approach demonstrates more precise frequency response, especially the phase response of the system under identification.

A Study on Integrated Small Signal Stability Analysis of Power Systems (계통의 종합적 미소신호 안정도해석에 관한 연구)

  • Nam, Ha-Kon;Song, Sung-Geun;Kim, Yong-Gu;Shim, Kwan-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1033-1036
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF