• Title/Summary/Keyword: Four-switch inverter

Search Result 46, Processing Time 0.025 seconds

Space-vector PWM Techniques for a Two-Phase Permanent Magnet Synchronous Motor Considering a Reduction in Switching Losses

  • Lin, Hai;Zhao, Fei;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.905-915
    • /
    • 2015
  • Two PWM techniques using space vector pulse-width modulation (SVPWM) are proposed for a two-phase permanent magnet synchronous motor (PMSM) driven by a two-phase eight-switch inverter. A two-phase motor with two symmetric stator windings is usually driven by a two-phase four-, six-, or eight-switch inverter. Compared with a four- and six-switch inverter, a two-phase eight-switch inverter can achieve larger power output. For two-phase motor drives, the SVPWM technique achieves more efficient DC bus voltage utilization and less harmonic distortion of the output voltage. For a two-phase PMSM fed by a two-phase eight-switch inverter under a normal SVPWM scheme, each of the eight PWM trigger signals for the inverter have to be changed twice in a cycle, causing a higher PWM frequency. Based on the normal SVPWM scheme, two effective SVPWM schemes are investigated in order to reduce the PWM frequency by rearranging four comparison values, while achieving the same function as the normal PWM scheme. A detailed explanation of the normal and two proposed SVPWM schemes is illustrated in the paper. The experimental results demonstrate that the proposed schemes achieve a better steady performance with lower switching losses compared with the normal scheme.

Field Oriented Control for Induction Motor Using Four Switch Three Phases Inverter

  • Tuyen, Nguyen D.;Hoang, Nguyen M.;Lee, Hong-Hee;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.216-218
    • /
    • 2008
  • This paper presents a space vector pulse width modulation (SVPWM) technique for four-switch three-phase (4S3P) inverter topology. The method aims to apply Field Oriented Control (FOC) of Induction motor using 4S3P. The simulations are carried out and the experimental results are given to verify the feasibility of this method.

  • PDF

Sensorless Control of PMSM by a Four-Switch Inverter with Compensation of Voltage Distortion and Adjustment of Position Estimation Gain

  • Kim, Byeong-Han;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.100-109
    • /
    • 2017
  • This paper proposes performance improvement schemes for sensorless PMSM control drive using a four-switch three-phase inverter (so-called B4 inverter). In the proposed scheme, the back-EMF estimation-based sensorless control algorithm is used to control the brushless PMSM without position sensors. In order to have stable operation, this paper presents a gain adjustment scheme that compensates the reduction of stable sensorless operation range as long as the rotor speed increases. In B4 topology, the center point of dc-link capacitors is connected to 3-phase load, and it is prone to have the load current distortion. Hence, to mitigate this problem, a distortion compensation scheme by modifying voltage commands using measured dc-link potentials is proposed in this paper. The validity of the proposed method is evaluated by simulations and experiments.

Adaptive Carrier-based PWM for a Four-Switch Three-Phase Inverter under DC-link Voltage Ripple Conditions

  • Nguyen, Tuyen D.;Lee, Hong-Hee;Nguyen, Hoang M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.290-298
    • /
    • 2010
  • This paper proposes an adaptive carrier-based pulse width modulation (PWM) method for a four-switch three-phase (4S3P) inverter under dc-link voltage ripple conditions. The proposed method guarantees balanced output currents despite of the existence of the voltage oscillations across two dc-link capacitors. And also, this new approach achieves a linear over-modulation with calculation time reduction. Simulation and experimental results are given to validate the feasibility of the proposed method.

Compensation of Unbalanced Capacitor Voltage for Four-switch Three-phase Inverter Using DC Offset Current Injection (DC 오프셋 전류 주입에 의한 4-Switch 3-Phase Inverter의 커패시터 전압 불평형 보상)

  • Park, Young-Joo;Son, Sang-Hun;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.365-373
    • /
    • 2015
  • The performance of 4-switch 3-phase inverter(FSTPI) is mainly affected by the unbalanced voltages between two capacitors which replace two switches of conventional 6-switch 3-phase inverter(SSTPI). This paper proposes a DC offset current injection method to compensate the capacitor voltage unbalance for FSTPI. A simplified SVPWM method which can be applied to FSTPI is also proposed. The validity of the proposed methods is verified by computer simulation.

Four-switch Three-phase Inverter control method applied by simplified Space Vector PWM (간략화 된 SVPWM을 적용한 4-Switch 3-Phase Inverter의 제어 방법)

  • Son, Sang-Hun;Park, Young-Joo;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.283-292
    • /
    • 2016
  • The performance of 4-switch 3-phase inverter(: FSTPI) which replace two switches of 6-switch 3-phase inverter(: SSTPI) is mainly affected by the compensator unbalanced voltages and output voltage control method. This paper proposes a DC offset current injection method to compensate the capacitor unbalanced voltages for FSTPI. A simplified SVPWM method which can be applied to FSTPI is also proposed. The validity of the proposed methods is verified by simulation and experiment using SPMSM.

Driving Algorithm on Three Phase BLDC Motor Applied 4-Switch using Voltage Doubler (Voltage Doubler를 이용한 4-스위치 3상 BLDC 전동기 구동 알고리즘)

  • Yoon, Yong-Ho;Lee, Jung-Suk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • Over the years, traditionally, six-switch three-phase inverters have been widely utilized for variable speed alternating current motor drives. Recently, some efforts have been made on the application of four-switch three phase inverter for uninterruptible power supply and variable speed drives. This is due to some advantages of the four-switch three phase inverter over the conventional six-switch three-phase inverters such as reduced price due to reduction in number of switches, reduced switching losses, reduced number of interface circuits to supply logic signals for the switches, simpler control algorithms to generate logic signals, less chances of destroying the switches due to lesser interaction among switches, and less real-time computational burden. However such as slow di/dt and speed limitation, are the inherent characteristics and main drawbacks of the four-switch configuration. Those problems can be overcome in conjugation with Voltage-doublers which has additional advantage, such as unity power factor correction.

A Cost Effective DC Link Variable Inverter Using 2-Switch Buck-Boost Converter (2-스위치 Buck-Boost 컨버터를 이용한 DC 링크 전압 가변형 인버터 설계)

  • Kang, Hyun-Soo;Kim, Jun-Hyung;Lee, Byoung-Kuk;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.950-959
    • /
    • 2009
  • In this paper, a dc link voltage variable inverter system is proposed, which consists of a two-switch buck-boost converter and a four-switch inverter. In addition, as the current and torque ripples are generated by a voltage difference between back EMF and dc link voltage, these ripples could be reduced according to the controlled dc-link voltage according to the motor speed. The validity of the proposed inverter is verified by informative simulation and experimental results.

Investigation of Low-Frequency Characteristics of Four-Switch Three-Phase Inverter

  • Yuan, Qingwei;Cheng, Chong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1471-1483
    • /
    • 2017
  • The low-frequency characteristics of four-switch three-phase (FSTP) inverter are investigated in this paper. Firstly, a general space vector pulse width modulation (SVPWM) directly involved the neutral point voltage of DC-link is proposed, where no sector identifications and trigonometric function calculations are needed. Subsequently, to suppress the DC offset in the neutral point voltage, the relationship between the neutral point voltage and the ${\beta}-axis$ component of the load current is derived, and then a new neutral point voltage control scheme is proposed where no low pass filter is adopted. Finally, the relationship between the load power factor and the maximum linear modulation index of the FSTP inverter is revealed. Since the operational region for the FSTP inverter in low frequency is reduced by the enlarged amplitude of the neutral point voltage, a linear modulation range enlargement scheme is proposed. A permanent magnet synchronous motor with preset rotary speed serves as the low-frequency load of the FSTP inverter. Experimental results verify that the new neutral point voltage control scheme is effective in the deviation suppression of the neutral point voltage, and the proposed scheme is able to provide a larger linear operational region in low frequency.