• 제목/요약/키워드: Four-network model

검색결과 553건 처리시간 0.028초

빅데이터를 활용한 사회적 이슈와 소비행동 연구 (A Study on Social Issues and Consumption Behavior Using Big Data)

  • 백승헌;김기탁
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제13권8호
    • /
    • pp.377-389
    • /
    • 2019
  • 본 연구는 일본 불매운동과 관련된 일본스포츠 용품에 대한 소비자들의 인식을 조사하고 인식에 따른 문제점파악과 변인을 추출하기 위해 소셜네트워크 빅데이터 분석을 실시하였다. 소셜네트워크 빅데이터 분석을 "일본 불매운동"과 "일본 스포츠 용품"의 2가지 영역으로 조사를 실시하였으며, 조사기간은 불매운동이 이슈가 되었던 2019년 7월 1일 ~ 7월 31일까지의 1개월의 데이터를 수집하여 조사하였다. 연구방법을 구체화하면 시대적 이슈파악 - 소셜네트워크 분석을 활용한 키워드 설정 - TEXTOM과 Ucinet 6프로그램을 용한 CONCOR분석을 활용한 군집파악 - 전문가 회의를 통한 변인선정 - 설문지 작성 및 수정보완 - 설문지의 타당도와 신뢰도 검증 - 구조모형방정식을 활용한 가설검증으로 구성하였다. 소셜네트워크의 빅데이터를 활용한 결과를 바탕으로 관련특성, 국민성, 태도, 소비행동의 4가지변인을 추출하였고 4가지 변인의 설문문항은 총 30문항, 292부의 설문지를 최종 가설검증에 활용하였다. 분석결과 첫째, 불매운동 관련특성은 국민성의 정(+)적 관계가 나타났다. 구체적으로 불매운동 관련특성(불매운동 필요성, 불매운동소속감, 불매운동혜택지각 모두는 국민성에 정(+)적 관계가 나타났다. 둘째, 국민성은 태도에 정(+)적 관계가 있는 것으로 나타났다. 셋째, 국민성은 소비행동에 정(+)적 관계가 있는 것으로 나타났다. 이를 종합하면, 첫째 가설검증을 통해 일본불매운동은 무조건적인 감정대립이 아닌 현재와 같은 문화운동을 수준 높게 잘 대처해 나가야 자세가 필요할 것이며, 한국의 역사를 세계에 널리 알릴 수 있는 캠페인으로 발전해 나갈 것을 시사한다. 둘째 가설검증을 통해 최근 일본불매운동은 국가적 우월성을 강조했다는 것과 수출국가의 민족성을 무시했다는 점에서 나타난 문제의 결과이며, 글로벌 기업의 해외시장 진출 시 고려해야 할 사항임을 시사한다. 셋째 가설검증을 통해 불매운동은 양면적 성격에서 자신의 책임 하에 자신의 이익을 목적으로 자발적으로 참여되어야 하며, 어떠한 강조나 강요가 수반 되어선 안 될 것을 시사한다.

Land Use Regression 모델을 이용한 수도권 초등학교 대기오염 노출 분석 (Land Use Regression Model for Assessing Exposure and Impacts of Air Pollutants in School Children)

  • 이지영;임종한;김환철;황승식;정달영;박명숙;김정애;이재준;박노욱;강성찬
    • 한국대기환경학회지
    • /
    • 제28권5호
    • /
    • pp.571-580
    • /
    • 2012
  • Epidemiologic studies of air pollution need accurate exposure assessments at unmonitored locations. A land use regression (LUR) model has been used successfully for predicting traffic-related pollutants, although its application has been limited to Europe, North America, and a few Asian region. Therefore, we modeled traffic-related pollutants by LUR then examined whether LUR models could be constructed using a regulatory monitoring network in Metropolitan area in Korea. We used the annual-mean nitrogen dioxide ($NO_2$) in 2010 in the study area. Geographic variables that are considered to predict traffic-related pollutants were classified into four groups: road type, traffic intensity, land use, and elevation. Using geographical variables, we then constructed a model to predict the monitored levels of $NO_2$. The mean concentration of $NO_2$ was 30.71 ppb (standard deviation of 5.95) respectively. The final regression model for the $NO_2$ concentration included five independent variables. The LUR models resulted in $R^2$ of 0.59. The mean concentration of $NO_2$ of elementary schools was 34.04 ppb (standard deviation of 5.22) respectively. The present study showed that even if we used regulatory monitoring air quality data, we could estimate $NO_2$ moderately well. These analyses confirm the validity of land use regression modeling to assign exposures in epidemiological studies, and these models may be useful tools for assessing health effects of long-term exposure to traffic related pollution.

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF

Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축 (Building of Prediction Model of Wind Power Generationusing Power Ramp Rate)

  • 황미영;김성호;윤은일;김광득;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.211-218
    • /
    • 2012
  • 전 세계적으로 화석연료의 많이 사용이 증가되고 있으며 이로 인해 온실가스가 배출되어 지구 온난화와 환경오염이 심각해지고 있는 실정이다. 지구의 환경오염을 줄이기 위해서 무공해 청정에너지인 신재생에너지에 대한 관심이 증가되는 추세인데, 그중에서도 풍력발전은 환경오염 물질을 배출하지 않고, 자원량이 무한대이기 때문에 많은 관심을 받고 있다. 하지만, 풍력발전은 전력 생산량이 불규칙한 단점을 갖고 있어 풍력 터빈의 손상과 전력 생산량이 불규칙적인 문제를 야기하여 이러한 문제점을 보완하기 위해 풍력 발전량을 정확하게 예측하는 것이 중요하다. 풍력 발전량을 정확하게 예측하기 위해서 전력 생산량이 급증 또는 급감하는 것을 의미하는 ramp의 특성을 잘 활용해야 한다. 이 논문에서는 예측의 정확도를 높이기 위하여 다계층 신경망을 이용해 예측모델을 구축하였다. 구축된 예측모델은 흔히 사용되는 풍속, 풍향 속성뿐만 아니라 Power Ramp Rate(PRR) 속성까지 사용하였다. 구축된 풍력 발전량 예측모델은 앞서 말한 세 가지 속성을 모두 사용한 경우, 두 속성을 조합하여 사용한 경우 총 4가지 예측모델을 구축하였다. 구축된 4가지 예측모델을 성능평가 한 결과 PRR, 풍속, 풍향의 속성 모두를 사용한 예측모델의 예측 값이 풍력 터빈에서 관측된 관측 값에 가장 근접하였다. 그로 인해 PRR 속성을 사용하면 풍력 발전량의 예측 정확도를 향상 시킬 수 있었다.

온라인 네트워킹 활동이 가상협업 역량 및 업무성과에 미치는 영향 (The Influence of Online Social Networking on Individual Virtual Competence and Task Performance in Organizations)

  • 서아영;신경식
    • Asia pacific journal of information systems
    • /
    • 제22권2호
    • /
    • pp.39-69
    • /
    • 2012
  • With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.

  • PDF

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

Gene Expression Profiling of the Rewarding Effect Caused by Methamphetamine in the Mesolimbic Dopamine System

  • Yang, Moon Hee;Jung, Min-Suk;Lee, Min Joo;Yoo, Kyung Hyun;Yook, Yeon Joo;Park, Eun Young;Choi, Seo Hee;Suh, Young Ju;Kim, Kee-Won;Park, Jong Hoon
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.121-130
    • /
    • 2008
  • Methamphetamine, a commonly used addictive drug, is a powerful addictive stimulant that dramatically affects the CNS. Repeated METH administration leads to a rewarding effect in a state of addiction that includes sensitization, dependence, and other phenomena. It is well known that susceptibility to the development of addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. These behavioral abnormalities reflect neuroadaptive changes in signal transduction function and cellular gene expression produced by repeated drug exposure. To provide a better understanding of addiction and the mechanism of the rewarding effect, it is important to identify related genes. In the present study, we performed gene expression profiling using microarray analysis in a reward effect animal model. We also investigated gene expression in four important regions of the brain, the nucleus accumbens, striatum, hippocampus, and cingulated cortex, and analyzed the data by two clustering methods. Genes related to signaling pathways including G-protein-coupled receptor-related pathways predominated among the identified genes. The genes identified in our study may contribute to the development of a gene modeling network for methamphetamine addiction.

A Study of Holism based Service Experience Analysis System

  • Kim, Sung-Su;Lee, Eun-Jong
    • 대한인간공학회지
    • /
    • 제31권1호
    • /
    • pp.49-61
    • /
    • 2012
  • Objective: The aim of this study is to offer a holism based Service Experience Analysis System(HSEAS) for service design. Background: Customer experience has been focused in a lot of service area. But it is difficult to understand the customer's needs and their experiences because it's so complex and uncertain. Thus it needs holistic approach that means it's difficult to explain general character merely through the understanding of small parts that composes an object and it must be analyzed within the overall context. Method: Accordingly, the thesis paper proposes the Service Experience Analysis System that satisfies the four following needs. (1) Need of solid Experience Framework in which the special quality of the service experience is considered, (2) need of support for the semantic cohesion between different kinds of data, (3) need of support for the management and search of vast data, and (4) need of building the knowledge base system for collaborative research. Results: HSEAS combines the short information in the customers' words and behaviors or situations and circumstances and provides a place of analysis where the context of the general experience can be read and allows concrete understanding of the actual state and factor of the problem as a Combined Data Analysis Tool. Conclusion: HSEAS becomes the center of information management, analysis and connection and it provides a free collaboration place where physical condition has no relations to as a knowledge base system based on network. Application: It is expected that length and width will be added to the analysis and assistance for effectively accumulating information will be provided in the area of diverse service.

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Jin-Kyoung;Chae, Chi-Bom;Kim, Yangmee
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.651-656
    • /
    • 2009
  • The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

한약재 사용량 데이터 분석을 통한 한국, 중국, 일본 전통의학의 이론적 특성 비교연구 (Identifying Theoretical Characteristics of Traditional Medicines in Korea, China, and Japan through the Herb Usage Data)

  • 박무순;이충열;이태희;김연섭;김창업
    • 동의생리병리학회지
    • /
    • 제32권3호
    • /
    • pp.149-156
    • /
    • 2018
  • Traditional medicines (TM) in Korea, China, and Japan share most of the theories and therapeutic tools, but there are also differences due to their unique histories and cultures. Here, we aim to identify the differences in the utilization of TM theory between three countries by analyzing herb usage data in terms of the related traditional theories. Herb usage data of each country was collected from "Investigation of Korean medicine use and herbal medicine consumption survey" (Korea), "Analytical report on circulation of key Chinese medicinal materials" (China), and "Survey report on raw material crude drug usage" (Japan). Fifty five herbs with sixty features belonging to five theoretical categories (four properties, five tastes, targeting meridians, treatment strategies, and herbal parts) were selected and analyzed. Weight Sum Model (WSM) and Network-Based Group Features (NBGF) were used to compare the theoretical characteristics of TM between three countries. For the statistical evaluation, we developed and applied Herb Set Enrichment Analysis (HSEA) for WSM and NBGF results. HSEA for WSM results revealed the kidney meridian were targeted more in Korea than Japan, while the spleen meridian were targeted more in Japan than Korea. Herbs with sour taste were used more in Japan than China. HSEA for NBGF results found that NBGF including warm, neutral, sweet, and tonifying features were more dominant in Korea and than Japan, while NBGF including cold, bitter, heat-clearing features were more dominant in Japan than the others. These results suggest that TM in Korea, China, and Japan have unique aspects of practice patterns and theoretical utilization.