• Title/Summary/Keyword: Four Machines

Search Result 156, Processing Time 0.021 seconds

Dynamic Modeling and Analysis of the Washing Machine System with an Automatic Balancer (자동 밸런서를 갖는 세탁기 시스템의 동력학 모델링 및 해석)

  • Oh, Hyuck-Jin;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1212-1220
    • /
    • 2004
  • The structural unbalance mass and laundry are the important sources of the severe vibrations of automatic washing machines. In this paper, a mathematical model is developed for the dynamic analysis of the vertical axis automatic washing machines of pulsator-type. In the model, the rigid body motion of tub assembly is represented by six degrees of freedom and the dynamics of automatic hydraulic balancer is represented by one degree of freedom. The fundamental elastic modes of the tub shell and four suspension bars are also taken into account in the mathematical model, based on analytical and experimental modal analysis results. The 12 degrees of freedom equations of motion are derived by using the Lagrange's equations and the present dynamic model is evaluated by comparing the numerical simulation results with experimentally measured data.

Genetic Algorithms with a Permutation Approach to the Parallel Machines Scheduling Problem

  • 한용호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.2
    • /
    • pp.47-47
    • /
    • 1989
  • This paper considers the parallel machines scheduling problem characterized as a multi-objective combinatorial problem. As this problem belongs to the NP-complete problem, genetic algorithms are applied instead of the traditional analytical approach. The purpose of this study is to show how the problem can be effectively solved by using genetic algorithms with a permutation approach. First, a permutation representation which can effectively represent the chromosome is introduced for this problem . Next, a schedule builder which employs the combination of scheduling theories and a simple heuristic approach is suggested. Finally, through the computer experiments of genetic algorithm to test problems, we show that the niche formation method does not contribute to getting better solutions and that the PMX crossover operator is the best among the selected four recombination operators at least for our problem in terms of both the performance of the solution and the operational convenience.

Generalized Vector Control with Reactive Power Control for Brushless Doubly-Fed Induction Machines

  • Duan, Qiwei;Liu, Shi;Schlaberg, H. Inaki;Long, Teng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.817-825
    • /
    • 2018
  • In this paper, a current hysteresis control with good decoupling properties for doubly-fed brushless induction machines (BDFIMs) has been proposed based on a generalized vector model. The independent control of the reactive power and speed for BDFIMs has been achieved by controlling the d-axis and the q-axis current of the control windings (CW). The proposed vector control method has been developed for the power winding (PW) flux frame. Experimental verification of a type Y180M-4 BDFIM prototype with 1/4 pole-pairs has been presented. Evidence of its good performance has been shown through experimental results.

Transformerless Cascaded AC-DC-AC Converter for Multiphase Propulsion Drive Application

  • Tao, Xing-Hua;Xu, Lie;Song, Yi-Chao;Sun, Min
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.354-359
    • /
    • 2012
  • A transformerless converter suitable for multiphase drive application is presented in this paper. The topology employs a cascaded H-bridge rectifier as the interface between the grid and multi inverters which drive the multiphase motor. Compared with the conventional structure, the new topology eliminates the input transformer and also has the advantages such as four quadrant operation, simple configuration, low cost, high efficiency, and so on. The control strategies for the grid-side cascade H-bridge rectifier and the motor-side inverter are studied accordingly. Based on the multi-rotational reference frame, modular control scheme is developed to regulate the multiphase drive system. Simulation results show the proper operation of the proposed topology and the corresponding control strategy.

Characteristic Analysis of Two-Phase 4/5-Pole Switched Reluctance Motor

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.347-353
    • /
    • 2012
  • Design and analysis of a novel 2-phase 4/5 Switched Reluctance Motor(SRM) is presented. The proposed motor employs a novel stator pole configuration. A novel SRM employs four-rotor and five-stator poles. The motor has no dead-zone and can be operate at any rotor position. The structure and operating principle are also described. The comparison between the proposed motor and a conventional two-phase 4/2 SRM is undertaken in this analysis. Furthermore, the Finite Element Analysis(FEA) and matlab-simulink are used to predict and simulate the performance of a proposed motor. The results of investigation indicate that the proposed structure offers a better performance in term of torque production.

Cascaded H-bridge Multilevel Inverter for High Precision and Linear Control of the Rate of Ozone Yielding

  • Park, Sung-Jun;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • A multilevel inverter employing a cascade transformer is proposed for a silent-discharge-tube ozone generating system. The proposed inverter consists of four full-bridge inverters and fourteen transformers which have a series-connected secondary. It can accurately control the amplitude of the output voltage; hereby, it improves a linear characteristic of the rate of ozone yielding. The power regulation characteristics and operational principle of the proposed system are explained from a practical point of view. High precision ozone generating performance of the proposed multilevel inverter is verified by computer-aided simulations and experiment results.

Tiny Magnetic Robot Mechanism and Manipulation for Stent Transportation and Installation

  • Yu, Chang-Ho;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.162-167
    • /
    • 2017
  • Magnetic spiral-type microrobots, which are driven by a rotating magnetic field, have excellent locomotive abilities, whereas their medical applications are limited in the terms of function, such as the ability to drill in blood vessels. In this study, we propose a new robot with superior applications using a magnetic spiral-type machine. The proposed robot can be applied to stent transportation and installation without a catheter. In particular, the robot can be applied to the cardiovascular system, cerebrovascular disease, and nonvascular stent applications depending on the robot size. The robot consists of two independent spiral-type machines and four magnets in total. We controlled directions of thrust force of the two machines, respectively, for active locomotion with a task. We conducted a preliminary validation of the proposed robot for stent transportation and installation through experimental analyses.

Scheduling Heuristics for a Two-Stage Hybrid Flowshop with Nonidentical Parallel Machines (이종 병렬기계를 가진 2단계 혼합흐름생산시스템의 일정계획)

  • Lee, Ji-Soo;Park, Soon-Hyuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.254-265
    • /
    • 1999
  • We consider two stage hybrid flowshop scheduling problem when there are two non-identical parallel machines at the first stage, and only one machine at the second stage. Several well-known sequence-first allocate-second heuristics are considered first. We then propose an allocate-first sequence-second heuristic to find minimum makespan schedule. The effectiveness of the proposed heuristic algorithm in finding a minimum makespan schedule is empirically evaluated by comparing with easily computable lower bound. The proposed heuristic algorithm as well as the existing heuristics are evaluated by simulation in four cases which have different processing time distribution, and it is found that the proposed algorithm is more effective in every case.

  • PDF

Modification of Discharge Mechanism of Binder Harvesters (바인더수확기(收穫期)의 방출구조(放出構造) 개선(改善)에 관한 연구(硏究))

  • Park, Keum Joo;Chung, Chang Joo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.26-38
    • /
    • 1983
  • Binder harvesters introduced to Korea were originally designed to be used for Japonica varieties which are highly resistant to shattering. In order to improve the performance of the binder to Indica varieties which are easily shattered and have shorter stem, mechanical modifications of the binder are inevitable. Shattering losses of the binder can be classified into two major parts; one incurred before and one after binding operations. The latter has been evaluated as great as the former. Previous studies indicated that the high discharge losses resulted from a great impact force of the discharge arm on the rice bundle during the discharge process. This study was intended to theoretically analyze the discharge mechanism of four-bar linkage. For this purpose, two commercially available binder harvesters having a four-bar linkage as a discharge mechanism were analyzed. Using the results from the motion analysis and the other structural constraints of the machines, they were modified and experimentally compared with the machines without modification to see whether any decrease in grain losses was obtained. The results obtained in this study are summarized as follows: 1. The path, velocity and acceleration of discharge arm were computer analyzed by vector analysis. Using results of the analysis and intrinsic constraints of the binder, discharge mechanism was modified to reduce the impact force on bundle by discharge arm in the range where the discharge performance was not deteriorated. This modification of the discharge mechanism could be done with an aid of four-bar linkage synthesis technique. As a result, average velocity and acceleration of the discharge arm during the discharge process were reduced respectively by 19 percent and 33 percent for binder A, and 17 percent and 35 percent for binder B. 2. Through the modification of the discharge mechanism, discharge losses of binder A were reduced by 42-56 percent for Milyang 23, Poongsan and Hangang chal, and discharge losses of binder B were reduced by 13-20 percent for Milyang 23 and Poongsan. 3. Discharge losses were decreased as the bundle size became larger and the size effect on the decrease rate appeared more significant in the binders with modifications than in those without modifications.

  • PDF

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.