• 제목/요약/키워드: Foundation soil

검색결과 1,119건 처리시간 0.033초

DVGW이론에 따른 상수관망의 부식방지에 관한 연구 (Corrosion Reduction Techniques of Pipe Line Net Using DVGW)

  • 추태호;김하일;제성진;옥치율
    • 한국콘텐츠학회논문지
    • /
    • 제6권11호
    • /
    • pp.310-316
    • /
    • 2006
  • 상수도관망에서 발생하는 누수현상은 수자원의 손실뿐만 아니라 압력손실로 인한 추가적 가압 설비의 필요성 및 누수 되는 관로 주변의 토질의 약화 등을 초래하여 관망의 유지관리를 어렵게 하고, 심각한 경제적 손실을 야기하고 있다. 본 연구는 구역고립으로 인한 수압과 유량 등을 상시 모니터링 하여 누수사고의 적극적인 대처와 누수발생을 미연에 방지함으로써 유수율을 향상시킬 수 있다. 실제 구역고립 후 계속되는 수압조절 및 유입유량의 모니터링에 인하여 구역 내 유수율 산정결과 평균 유수율은 88.94%로서 부산광역시 2003년도의 유수율 79.5%보다 9.44% 높게 조사되었다.

  • PDF

정방형 기초와 Unlined Soft Ground터널의 3차원적 거동 (Three Dimensional Behavior or Square Footing and Bnlined Solt Ground Tunnel)

  • 유충식
    • 한국지반공학회지:지반
    • /
    • 제10권3호
    • /
    • pp.97-110
    • /
    • 1994
  • Lining이 타설되기 이전의 unlink 안정 문제를 야기시킬 수 있으며 이 구조물의 역학적 상호작용에 관한 unlined 터널의 3차원적 거동에 관한 원 탄소성 유한요소해석 프로그램을 기초의 극한 지지력, 지반과 터널주컴퓨터 해석 결과를 고찰하여 정방형 unlined 터널은 기초의 극한 지지력을 기초의 형상이나 근입깊이 등에 의해 치하는 터널은 터널의 축방향으로 발생하는 응력의 크기는 정방형 기초 위치와 음력의 종류에 따라 다른 것으로 상호작용의 정도에 따라 다름을 볼 수 있었다.

  • PDF

충격반향기법을 이용한 깊은 기초의 건전도 평가(수치해석) (Integrity Evaluation of Deep Foundations by Using Impact Echo Method(Numerical Study))

  • 김동수;박연홍
    • 한국지반공학회논문집
    • /
    • 제15권2호
    • /
    • pp.139-152
    • /
    • 1999
  • 근래에 들어 구조물의 대형화에 따라 현장타설 말뚝을 하부 구조물로서 광범위하게 적용하고 있다. 그러나 현장타설 말뚝에 결함이 생기면 상부 하중에 대한 지지력 저하와 함께 침하량이 증가하게 되어 상부 구조물에 치명적인 손실을 초래할 수 있다. 따라서 비파괴시험 기법에 의한 콘크리트 말뚝의 효과적인 건전도 평가기법 개발이 중요하게 대두되고 있다. 본 연구에서는 수치해석을 통하여 콘크리트 말뚝의 건전도 평가에 이용되는 충격반향기법의 적용성을 검토하였다. 3차원 축대칭 유한요소법을 이용하여 건전한 말뚝과 현장타설 말뚝의 전형적인 결함인 병목, 공동, 불량 콘크리트를 포함하는 말뚝, 그리고 지반 및 암반위에 놓인 말뚝에 관한 해석을 수행하였다. 해석결과 현장타설 말뚝에 적용되는 충격반향기법의 적용성 평가에 있어서 유한요소법이 효과적임을 알 수 있었다.

  • PDF

극한지 파이프라인 프로젝트 설계단계에서의 데이터 분류에 관한 연구 (A Study on the Data Classification in Engineering Stage of Pipeline Project in Extreme Cold Weather)

  • 김창한;원서경;이준복;한충희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.214-215
    • /
    • 2014
  • Recently, Russia decided to export an annual 7.5 million tons of natural gas to Korea over 30 years from 2015, as also deal with China, planed to build a pipeline connecting Siberia to Shandong Peninsula about 4000km. Risk management is required depending on the project in extreme cold weather, because it is concerned about the behavior of the seasonal changes in soil temperature and the strain of pipe according to the long-distance pipeline construction. The plan of data management shall be prepared in parallel for a sophisticated risk management, because a data is massive scale and it is generated/accumulated in real time. Therefore, this research is aimed to classify a data items in engineering stage of pipeline by previous studies for managing a generated data depending on the detail works in extreme cold weather. We expect to be provided the foundation of an efficient classification system of a generated data from the pipeline project life cycle.

  • PDF

A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models

  • Luevanos-Rojas, Arnulfo;Barquero-Cabrero, Jose Daniel;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.417-437
    • /
    • 2017
  • This paper shows a comparative study for design of reinforced concrete boundary combined footings of trapezoidal and rectangular forms supporting two columns and each column transmits an axial load and a moment around of the axis X (transverse axis of the footing) and other moment around of the axis Y (longitudinal axis of the footing) to foundation to obtain the most economical combined footing. The real soil pressure acting on the contact surface of the footings is assumed as a linear variation. Methodology used to obtain the dimensions of the footings for the two models consider that the axis X of the footing is located in the same position of the resultant, i.e., the dimensions is obtained from the position of the resultant. The main part of this research is to present the differences between the two models. Results show that the trapezoidal combined footing is more economical compared to the rectangular combined footing. Therefore, the new model for the design of trapezoidal combined footings should be used, and complies with real conditions.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

사질토 지반에 설치된 판앵커의 인발속도에 따른 저항력 분석 (Analysis of Loading Rate Capacity of Plate Anchor in Sand)

  • 유동만;서영교
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.31-39
    • /
    • 2012
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Nowadays, various types of earth anchors are used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research we analyzed the uplift behavior of plate anchors in sand using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed in various cases.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

Durability and mechanical performance in activated hwangtoh-based composite for NOx reduction

  • Kim, Hyeok-Jung;Park, Jang-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.307-314
    • /
    • 2021
  • Activated hwangtoh (ACT) is a natural resource abundant in South Korea, approximately 15.0% of soil. It is an efficient mineral admixture that has activated pozzolanic properties through high-temperature heating and rapid cooling. The purpose of this study is to improve a curb mixture that can reduce NOx outside and investigate durability performance. To this end, mortar curb specimens were manufactured by replacing OPC with ACT. The ACT substitution ratios of 0.0, 10.0, and 25.0% were considered, and mechanical and durability tests on the curb specimens were conducted at 28 and 91 days of age. Steam curing was carried out for three days for the production of curbs, which was very effective to strength development at early ages. The reduction in strength at early ages could be compensated through this process, and no significant performance degradation was evaluated in the tests on chloride attack, carbonation, and freezing and thawing. The mortar curb with an ACT of 10.0~25.0% replacement ratio exhibited clear NOx reduction through photocatalytic (TiO2) treatment. This is due to the increase in physical absorption through surface absorption and the photocatalyst-containing TiO2 coating. In this study, the reasonable range of the ACT replacement ratio for NOx reduction was quantitatively evaluated through a comprehensive analysis of each test.

Litter Decomposition Process in Coffee Agroforestry Systems

  • Petit-Aldana, Judith;Rahman, Mohammed Mahabubur;Parraguirre-Lezama, Conrado;Infante-Cruz, Angel;Romero-Arenas, Omar
    • Journal of Forest and Environmental Science
    • /
    • 제35권2호
    • /
    • pp.121-139
    • /
    • 2019
  • Decomposition of litter is a function of various interrelated variables, both biotic and abiotic factors. Litter decomposition acts like a natural fertilizer play a prime role in maintaining the productivity and nutrient cycling in agroforestry systems. There are few studies of decomposition carried out in agroforestry systems with coffee; so it is necessary to perform more research work to fill the research gap, which will allow a better understanding of the management of the coffee agroforestry systems. This paper is based on the theoretical and conceptual aspects of leaf litter decomposition in agroforestry systems, emphasizing the combination with coffee cultivation and critically examined the role of the different factors involved in the decomposition. This study made a comparison of different investigations with regards to weight loss, decomposition rates (k), initial chemical composition, and release of the main nutrients. This study suggested that it is necessary to implement studies of decomposition and mineralization, and the microflora and fauna associated with these processes, so that serves as an important tool to develop a model for enabling a description of the short, medium, and long-term dynamics of soil nutrients in coffee agroforestry systems.