• Title/Summary/Keyword: Foundation design

Search Result 2,076, Processing Time 0.024 seconds

Numerical Analysis of Belled Shaft Foundation in Thick Pusan Clays (대심도 부산점토에 적용된 종저말뚝(Belled Shaft foundation)의 수치해석 연구)

  • Rao, K.G.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.530-535
    • /
    • 2006
  • The Pusan clays are soft and thick deposits and in some places, they reach even up to 50-70m. So, the pile foundations are inevitable in almost all cases. But they are significantly expansive when the length of the pile reaches about 70m. In this study, a comprehensive parametric study has been carried out in order to reduce the pile length and number of piles required in turn the cost of the foundation for particular building. A belled shaft pile has been optimized for a typical soil profile using the PLAXIS (FEM code). These results have shown a new direction of the pile foundation in Pusan, Korea. The results including the variation of contact pressures at the bottom of the bell, optimization of the angle of the bell and height of the bell in terms of the diameter of the shaft. And also, the design curves have been generated so that they can be directly used for design of belled shaft foundations. However, the structural strength criterion is being checked in the concerned laboratory.

  • PDF

The Proposal of Simple Seismic Design Procedure for Pile Foundation (도로교 기초 말뚝에 대한 간편한 내진 설계절차 제안)

  • 서정혜;전완기;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.407-414
    • /
    • 1999
  • A simple seismic design procedure for pile foundation using PAR and LPILE$\^$plus/ was proposed. A case of pile foundation under a simple bridge was selected and analyzed. The calculated horizontal movements, shear forces and moments were compared with those evaluated by the numerical exact solutions, and the farmers had similar trends with the tatters.

  • PDF

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

Structural Design and Construction of the Foundation of TOKYO SKYTREE

  • Konishi, Atsuo;Emura, Masaru
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.249-259
    • /
    • 2015
  • This paper introduces the structural design and construction method for the foundation of the TOKYO SKYTREE, a new digital broadcasting tower in Tokyo, which has a height of 634 meters. The surface layer of the ground is occupied by soft soil, thus the foundation of this tower is an SRC continuous underground wall pile, designed and developed to have horizontal rigidity and pull-out resistance. The structural integrity and construction method of the wall pile was verified with an on-site full scale pull-out test concluding a maximum load of 40,000 kN.

A Case Study of The Design of Mega Foundations for High-rise Buildings (초고층 건축물의 대형기초 설계 사례)

  • Kim, Sung-Ho;Hong, Seung-Hyeun;Hong, Sa-Myun;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.55-77
    • /
    • 2007
  • Currently a large number of high rise building projects are under plan and a mega foundation system to support this high load with safety is requiring. The foundation of a highrise building is displaced by the building load, which influence the behavior of a super structure in reverse. In this aspect, the structural interaction analysis between a foundation and a super structure is necessary. In this study, the relationship of a superstructure of building and a foundation has been reviewed, considering the tendency of design from a capacity driven design to a performance design. Two different case studies have been introduced to help understand this relationship in more specific, the first case is the high rise building founded on a mat system on rock and the second is that on large diameter bored piles on soft ground condition.

  • PDF

Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction (지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가)

  • Yoo, Min Taek;Ha, Jeong Gon;Jo, Seong-Bae;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

An Optimal Design Algorithm of Pile Supported Foundations of Tower Cranes (타워크레인의 파일기초 최적설계 알고리즘 개발)

  • Ryu, Sang-Yeon;Seo, Deok-Seok;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.95-101
    • /
    • 2009
  • As buildings increase in height, lifting plans are becoming increasingly important on construction sites. As a critical piece of load-lifting equipment, the tower crane deserves a well thought-out stability review, since it has a significant impact and is very vulnerable to structural safety disaster. To ensure the structural stability of a tower crane, its lateral support or pile supported foundation designs must include consideration for stability, and pile foundation must be used if site conditions prevent soil from providing the required bearing capacity, or prevent the foundation from being increased to the required extent. Pile supported foundation design requires thorough and systematic review, as more stability parameters need to be considered than with an independent foundation. This paper intends to develop an optimal design algorithm that can minimize associated costs while ensuring the fundamental stability of pile supported foundation design, limiting the scope of research to fixed-type trolley tower cranes using pile supported foundations. The findings herein on pile foundation stability review parameters, process and optimal design are expected to improve the operational efficiency of staff concerned, and reduce the time and efforts required for pile foundation design.

An Example of JSP Method (JSP 공법의 시공 사례)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.37 no.3
    • /
    • pp.50-53
    • /
    • 2004
  • JSP(Jumbo Super Pile) method is a foundation treatment of mixing in depth, one of the soft ground improvement methods through which settlement and deformation of ground foundation is prevented. An example of this method which is applied for the foundation design of a new drainage pumping station is Introduced, and another applied example for an existing pumping station which is built on soft foundation is also introduced.

  • PDF

Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore (North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계)

  • Song, Jun-Ho;Kim, Yong-Woon;LEE, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

Behavior of the Foundation of Concrete Filled Steel Tubular Pier (CFT 교각 기초부의 거동특성)

  • Lee, Ha-Lim;Kim, Hee-Ju;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.491-498
    • /
    • 2011
  • In this paper, extensive structural behavior and effects of design parameters of steel column-base plate connections under axial and lateral loads were investigated to improve structural details of CFT(Concrete Filled Steel Tube) pier foundation using commercial FE analysis program, ABAQUS. For this study, design criteria of pier foundation was analyzed and numerical study based on the experiment of previous study was conducted to verify analysis methods. The failure behavior and stress distribution of pier foundation were analyzed using the verified analysis method. Various design parameters(base plate, deformed bar, stiffness and sizes of column) were investigated to analyze effects of each design parameters in entire structure.