• Title/Summary/Keyword: Fossil Fuels

Search Result 667, Processing Time 0.033 seconds

An Analysis on Shadow Price, Substitutability, and Productivity Growth Effect of Non-Priced Renewable Energy in the Korean Manufacturing Industries (국내 제조업에 대한 비가격 신재생에너지의 암묵가격, 대체가능성, 생산성 파급효과 분석)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.24 no.4
    • /
    • pp.727-745
    • /
    • 2015
  • This paper analyzes the firms' optimization behavior in response to rising demand for non-priced renewable energy in the manufacturing industries by using an input distance function. The annual estimates of the shadow price of renewable energy is derived and the trend of its shadow price over time is analyzed. The degree of substitution of renewable energy for fossil-fuels is examined. The input-based Malmquist productivity index, defined as a composite of the technical efficiency and technical change measures, is measured. The contribution of renewable energy input growth to the Malmquist index is analyzed. Empirical results indicate that the shadow price of renewable energy declined at an average annual rate of 17% over the period 1992-2012. Substitutability between renewable energy and fossil-fuels was limited. On average, a 1% increase in renewable energy would decrease Malmquist index by 0.04% per year.

Current status on Miscanthus for biomass (바이오매스로서의 억새에 대한 연구 동향)

  • Seo, Sang-Gyu;Lee, Jeong-Eun;Jeon, Seo-Bum;Lee, Byung-Hyun;Koo, Bon-Cheol;Suh, Sae-Jung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.320-326
    • /
    • 2009
  • The carbon dioxide concentration of the atmosphere is projected to increase by almost 50% over the first 50 years of this century. The major cause of this increase is continued combustion of fossil fuels. As a result, the significant changes in climate that have already occurred will be amplified, in particular a global temperature increase. Renewable energy production has a central role to play in abating net $CO_2$ emissions to a level that will arrest the development of global warming. Especially, biomass crops are becoming increasingly important as concerns grow about climate change and the need to replace carbon dioxideproducing fossil fuels with carbon-neutral renewable sources of energy. To succeed in this role, biomass crop has to grow rapidly and yield a reliable, regular harvest. A prime candidate is Miscanthus, or Asian elephant grass, a perennial species that produces over 3 metres of bamboo-like stems in a year. Miscanthus species are typically diploid or tetraploid. Hybrids between species with different ploidy levels result in the highly productive triploid hybrids, M. ${\times}$ giganteus. Here we will detail the Miscanthus characteristics desired of a biomass fuel crop.

Filtering Method for Analyzing Renewable Energy Stream Data (신재생 에너지 스트림 데이터 분석을 위한 필터링 기법)

  • Jin, Cheng Hao;Li, Xun;Kim, Kyu Ik;Hwang, Mi Yeong;Kim, Sang Yeob;Kim, Kwang Deuk;Ryu, Keun Ho
    • Journal of Convergence Society for SMB
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Recently, due to people's incontinent use all over the world, fossil fuels such as coal, oil, and natural gas were nearly to be exhausted and also causes serious environment pollutions. Therefore, there is a strong need to develop solar, wind, hydro, biomass, geothermal to replace fossil fuels to prevent suffering from above problems. Wish advances in sensor technology, such data is collected as a kind of stream data which arrives in an online manner so that it is characterized as high- speed, real-time and unbounded and it requires fast data processing to get the up-to-date results. Therefore, the traditional data processing techniques are not fit to deal with stream data. In this paper, we propose a kalman filter-based algorithm to process renewable stream data.

  • PDF

A Research Trend on Lunar Resources and Lunar Base (달 자원 탐사와 달 기지 연구 동향)

  • Kim, Kyeong Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.373-384
    • /
    • 2017
  • A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.

Cell Disruption of Dunaliella salina using Batch Low Frequency Non-Focused Ultrasound (비집속 회분저주파를 이용한 Dunaliella salina 세포 파쇄)

  • Choi, Jun-Hyuk;Kim, Gwang-Ho;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.63-71
    • /
    • 2021
  • Using fossil fuels in existing industrial systems causes a variety of social problems. Recently, many studies have been conducted on bio-refineries, which aim to actively utilize biomass to reduce the use of fossil fuels and solve various social problems. Among them, research using microalgae as a third-generation biomass has attracted considerable attention. Microalgae use inorganic matter to produce organic matter, and cell destruction is necessary to extract useful organic materials from microalgae. The extracted organic materials are currently used in various industrial fields. Numerous cell-destruction methods exist. We have investigated cell disruption by sonication, especially its efficiency. Ultrasound is a sound wave with frequencies above 20 kHz, and destroys cells by sending high energy through a cavitation that occurs, according to the characteristics of the sound wave. The Dunaliella salina microalgae used in this study was cultured in a flat-type photobioreactor. Experiments were performed using a batch low-frequency processing device. Logistic model was applied to analyze the results of cell-destruction experiments using ultrasound. The proper conditions for the most efficient cell destruction were OD 1.4(microalgae concentration)), 54watt(output power) and 200mL(microalgae capacity).

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

Study of Satellite Image Analysis Techniques to Investigate Construction Environment Analysis of Resource Development in the Arctic Circle - Alberta, Canada (북극권 자원개발 건설환경 조사를 위한 위성 영상 분석 기법 연구 - 캐나다 앨버타주 대상)

  • Kim, Sewon;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.549-559
    • /
    • 2021
  • The Arctic Circle's huge amounts of fossil fuels and mineral resources are being developed and subjected to active construction projects. Global efforts are continuing to actively respond to climate change, but the dependence on fossil fuels remains high. This study reports a preliminary survey conducted in Alberta, Canada, where oil sand resources are actively developed. A land cover map was prepared using satellite imagery to reduce the cost and time of surveying a wide area. Results likely useful to resource development projects such as ground surface temperature and snow cover distribution were derived by using the obtained image classification results. It is expected that the results of the present research and analysis will be used to establish strategies for the successful promotion and operation of projects to develop resources in the Arctic.

Transportable House with Hybrid Power Generation System (하이브리드 발전 시스템을 적용한 이동식 하우스)

  • Mi-Jeong Park;Jong-Yul Joo;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.205-212
    • /
    • 2023
  • In the modern society, the extreme weather caused by climate change has brought about exceptional damage in succession over the world due to the use of fossil fuels, and infectious diseases such as COVID-19 worsen the quality of human life. It is urgently necessary to reduce green-house gas and use new renewable energy. The global environmental pollution should be decreased by reducing the use of fossil fuels and using new renewable energy. This paper suggests a system which can function for the environment of four seasons, safety and communication, through the photovoltaic power-based intelligent CCTV, internet and WiFi, and cooling and heating systems, and can optimally manage power, through the real-time monitoring of the production and the consumption of the photovoltaic power. It suggests a hybrid generation system supporting diesel generation without discontinuation in the case of emergency such as system power outage caused by cold waves, typhoons and natural disasters in which the photovoltaic power generating system cannot be used.

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition (과량의 수화상태에서 음이온 전도성 이오노머의 분자동역학 전산모사 연구)

  • Hoseong, Kang;So Young, Lee;Hyoung-Juhn, Kim;Chang Hyun, Lee;Chi Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.475-485
    • /
    • 2022
  • The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.