• Title/Summary/Keyword: Forward security

Search Result 311, Processing Time 0.025 seconds

Practical Password-Authenticated Three-Party Key Exchange

  • Kwon, Jeong-Ok;Jeong, Ik-Rae;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.312-332
    • /
    • 2008
  • Password-based authentication key exchange (PAKE) protocols in the literature typically assume a password that is shared between a client and a server. PAKE has been applied in various environments, especially in the “client-server” applications of remotely accessed systems, such as e-banking. With the rapid developments in modern communication environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In such a peer-to-peer channel, it would be much more common for users to not share a password with others. In this paper, we consider password-based authentication key exchange in the three-party setting, where two users do not share a password between themselves but only with one server. The users make a session-key by using their different passwords with the help of the server. We propose an efficient password-based authentication key exchange protocol with different passwords that achieves forward secrecy in the standard model. The protocol requires parties to only memorize human-memorable passwords; all other information that is necessary to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only three rounds and four modular exponentiations per user. In fact, this amount of computation and the number of rounds are comparable to the most efficient password-based authentication key exchange protocol in the random-oracle model. The dispensation of random oracles in the protocol does not require the security of any expensive signature schemes or zero-knowlegde proofs.

Attribute-base Authenticated Key Agreement Protocol over Home Network (홈네트워크 상에서 속성기반의 인증된 키교환 프로토콜)

  • Lee, Won-Jin;Jeon, Il-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.49-57
    • /
    • 2008
  • User authentication and key agreement are very important components to provide secure home network service. Although the TTA adopted the EEAP-PW protocol as a user authentication and key transmission standard, it has some problems including not to provide forward secrecy. This paper first provides an analysis of the problems in EEAP-PW and then proposes a new attribute-based authenticated key agreement protocol, denoted by EEAP-AK. to solve the problems. The proposed protocol supports the different level of security by diversifying network accessibility for the user attribute after the user attribute-based authentication and key agreement protocol steps. It efficiently solves the security problems in the EEAP-PW and we could support more secure home network service than the EEAP-AK.

Blockchain based SDN multicontroller framework for Secure Sat_IoT networks (안전한 위성-IoT 네트워크를 위한 블록체인 기반 SDN 분산 컨트롤러 구현)

  • June Beom Park;Jong Sou Park
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.141-148
    • /
    • 2023
  • Recent advancements in the integration of satellite technology and the Internet of Things (IoT) have led to the development of a sophisticated network ecosystem, capable of generating and utilizing vast amounts of big data across various sectors. However, this integrated network faces significant security challenges, primarily due to constraints like limited latency, low power requirements, and the incorporation of diverse heterogeneous devices. Addressing these security concerns, this paper explores the construction of a satellite-IoT network through the application of Software Defined Networking (SDN). While SDN offers numerous benefits, it also inherits certain inherent security vulnerabilities. To mitigate these issues, we propose a novel approach that incorporates blockchain technology within the SDN framework. This blockchain-based SDN environment enhances security through a distributed controller system, which also facilitates the authentication of IoT terminals and nodes. Our paper details the implementation plan for this system and discusses its validation through a series of tests. Looking forward, we aim to expand our research to include the convergence of artificial intelligence with satellite-IoT devices, exploring new avenues for leveraging the potential of big data in this context.

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.

Secure Communication in Multiple Relay Networks Through Decode-and-Forward Strategies

  • Bassily, Raef;Ulukus, Sennur
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.352-363
    • /
    • 2012
  • In this paper, we study the role of cooperative relays to provide and improve secure communication rates through decodeand-forward (DF) strategies in a full-duplex multiple relay network with an eavesdropper. We consider the DF scheme as a basis for cooperation and propose several strategies that implement different versions of this scheme suited for cooperation with multiple relays. Our goal is to give an efficient cooperation paradigm based on the DF scheme to provide and improve secrecy in a multiple relay network. We first study the DF strategy for secrecy in a single relay network. We propose a suboptimal DF with zero forcing (DF/ZF) strategy for which we obtain the optimal power control policy. Next, we consider the multiple relay problem. We propose three different strategies based on DF/ZF and obtain their achievable secrecy rates. The first strategy is a single hop strategy whereas the other two strategies are multiple hop strategies. In the first strategy, we show that it is possible to eliminate all the relays' signals from the eavesdropper's observation (full ZF), however, the achievable secrecy rate is limited by the worst source-relay channel. Our second strategy overcomes the drawback of the first strategy, however, with the disadvantage of enabling partial ZF only. Our third strategy provides a reasonable compromise between the first two strategies. That is, in this strategy, full ZF is possible and the rate achieved does not suffer from the drawback of the first strategy. We conclude our study by a set of numerical results to illustrate the performance of each of the proposed strategies in terms of the achievable rates in different practical scenarios.

A Study on the User Authentication Scheme with Forward Secrecy (순방향 비밀성을 제공하는 사용자 인증 스킴에 관한 연구)

  • An, Young-Hwa
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.183-191
    • /
    • 2011
  • Recently Wang-Li proposed the remote user authentication scheme using smart cards. But the proposed scheme has not been satisfied security requirements considering in the user authentication scheme using the password based smart card. In this paper, we described the Wang-Li and Yoon et al.'s authentication scheme simply, and we prove that the Wang-Li's scheme is vulnerable to a password guessing attack and impersonation attack in case that the attacker steals the user's smart card and extracts the information in the smart card. Accordingly, we propose the improved user authentication scheme based on the hash function and generalized ElGamal signature scheme that can withstand many possible attacks including a password guessing attack, impersonation attack and replay attack, and that can offer the function of forward secrecy. The result of comparative analysis, the our proposed scheme is much more secure and efficient than the Wang-Li and Yoon et al.'s scheme.

ID-based Authentication Schemes with Forward Secrecy for Smart Grid AMI Environment (스마트그리드 AMI 환경을 위한 전방 보안성이 강화된 ID기반 인증 기법)

  • Park, Dae-Il;Yeo, Sang-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.736-748
    • /
    • 2013
  • In this paper, we analyse the vulnerabilities of KL scheme which is an ID-based authentication scheme for AMI network, and propose two kinds of authentication schemes which satisfy forward secrecy as well as security requirements introduced in the previous works. In the first scheme, we use MDMS which is the supervising system located in an electrical company for a time-synchronizing server, in order to synchronize smart grid devices in home, and we process device authentication with a new secret value generated by OTP function every session. In the second scheme, we use a secret hash-chain mechanism for authentication process, so we can use a new secret value every session. The proposed two schemes have strong points and weak points respectively and those depend on the services area and its environment, so we can select one of them efficiently considering real aspects of AMI environment.

A study on selecting of Light Cutoff Panel depending on the installation condition using the lighting simulation (조명 시뮬레이션을 이용한 설치 환경별 차광판 선정에 관한 연구)

  • Park, Hyung-Kyu;Gu, Jin-Hoi;Lee, Kyu-Mok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.246-251
    • /
    • 2016
  • The use of security lighting that emits spill light is considered a cause of light trespass problems in the residential areas. Therefore, a cutoff panel was installed as an alternative way to reduce light trespass. On the other hand, it has another problem in that it is less effective and is not good enough for aesthetics and safety. In this study, a light cutoff panel was designed and manufactured to reduce the light trespass, and the structure of a proper light cutoff panel was studied. Using a goniophotometer, the light distribution file (IES file) was extracted and the characteristics of light distribution were analyzed using the RELUX program. The results showed that the reduction of spilt light in the backward direction was decreased significantly for all types of light cutoff panels except the coated globe. In the case of a black powder coated light cutoff panel, the forward light caused by light reflected from the surface of the light cutoff panel was also reduced, which means that the black powder coated light cutoff panel is effective in the performance of light cutoff in the forward and backward directions. In addition, the coated glove increased the spilt light in the forward and backward directions because it reflects the upward light to go down. A 90 % accuracy between the measurement value of light trespass and the expected value of the light trespass was obtained from a simulation.

Fuzzy Logic-based Context-Aware Access Control Model for the Cloud Computing Environment (클라우드 컴퓨팅 환경을 위한 퍼지 논리 기반 상황인식 접근 제어 모델)

  • Jing, Si Da;Chung, Mok-Dong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.51-60
    • /
    • 2011
  • Authentication model in the wireless environment has many security vulnerabilities. However, there is no adapting standard method in this field. Therefore, we propose a fuzzy logic based authentication model to enhance the security level in the authentication environment. We use fuzzy logic based classification to construct our model, and also additionally utilize improved AHP and case-based reasoning for an appropriate decision making. We compute the context information by using the improved AHP method, use the proposed model to compute the security level for the input data, and securely apply the proposed model to the wireless environment which has diverse context information. We look forward to better security model including cloud computing by extending the proposed method in the future.

A Polynomial-based Study on the Protection of Consumer Privacy (소비자 프라이버시 보호에 관한 다항식 기반 연구)

  • Piao, Yanji;Kim, Minji
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.145-158
    • /
    • 2020
  • With the development and widespread application of online shopping, the number of online consumers has increased. With one click of a mouse, people can buy anything they want without going out and have it sent right to the doors. As consumers benefit from online shopping, people are becoming more concerned about protecting their privacy. In the group buying scenario described in our paper, online shopping was regarded as intra-group communication. To protect the sensitive information of consumers, the polynomial-based encryption key sharing method (Piao et al., 2013; Piao and Kim, 2018) can be applied to online shopping communication. In this paper, we analyze security problems by using a polynomial-based scheme in the following ways : First, in Kamal's attack, they said it does not provide perfect forward and backward secrecy when the members leave or join the group because the secret key can be broken in polynomial time. Second, for simultaneous equations, the leaving node will compute the new secret key if it can be confirmed that the updated new polynomial is recomputed. Third, using Newton's method, attackers can successively find better approximations to the roots of a function. Fourth, the Berlekamp Algorithm can factor polynomials over finite fields and solve the root of the polynomial. Fifth, for a brute-force attack, if the key size is small, brute force can be used to find the root of the polynomial, we need to make a key with appropriately large size to prevent brute force attacks. According to these analyses, we finally recommend the use of a relatively reasonable hash-based mechanism that solves all of the possible security problems and is the most suitable mechanism for our application. The study of adequate and suitable protective methods of consumer security will have academic significance and provide the practical implications.