• 제목/요약/키워드: Forward Osmosis

검색결과 69건 처리시간 0.021초

Organic fouling in forward osmosis (FO): Membrane flux behavior and foulant quantification

  • Xia, Shengji;Yao, Lijuan;Yang, Ruilin;Zhou, Yumin
    • Membrane and Water Treatment
    • /
    • 제6권2호
    • /
    • pp.161-172
    • /
    • 2015
  • Forward osmosis (FO) is an emerging membrane technology with potential applications in desalination and wastewater reclamation. The osmotic pressure gradient across the FO membrane is used to generate water flux. In this study, flux performance and foulant deposition on the FO membrane were systematically investigated with a co-current cross-flow membrane system. Sodium alginate (SA), bovine serum albumin (BSA) and tannic acid (TA) were used as model foulants. Organics adsorbed on the membrane were peeled off via oscillation and characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). When an initial flux of $8.42L/m^2h$ was applied, both flux reduction and foulant deposition were slight for the feed solution containing BSA and TA. In comparison, flux reduction and foulant deposition were much more severe for the feed solution containing SA, as a distinct SA cake-layer was formed on the membrane surface and played a crucial role in membrane fouling. In addition, as the initial SA concentration increased in FS, the thickness of the cake-layer increased remarkably, and the membrane fouling became more severe.

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

랩스케일 정삼투실험을 통한 정삼투막의 수투과도 평가 (Evaluation of water permeability of forward osmosis membranes using osmotically driven membrane test)

  • 이준서;김수한
    • 상하수도학회지
    • /
    • 제30권4호
    • /
    • pp.417-425
    • /
    • 2016
  • Desalination is a key technology to overcome water shortage problem in a near future. High energy consumption is an Achilles' heel in desalination technology. Osmotically driven membrane processes like forward osmosis(FO) was introduced to address this energy issue. Characterizing membrane properties such as water permeability(A), salt permeability(B), and the resistance to salt diffusion within the support layer($K_{ICP}$) are very important to predict the performance of scaled-up FO processes. Currently, most of researches reported that the water permeability of FO membrane was measured by reverse osmosis(RO) type test. Permeating direction of RO and FO are different and RO test needs hydraulic pressure so that several problems can be occurred(i.e. membrane deformation, compaction and effect of concentration polarization). This study focuses on measuring water permeability of FO membrane by FO type test results in various experimental conditions. A statistical approach was developed to evaluate the three FO membrane properties(A, B, and $K_{ICP}$) and it predicted test result by the internal and external concentration polarization model.

정삼투 멤브레인 공정에서 칼슘이온과 용존 유기물 상호작용에 의한 플럭스 변화 연구 (Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system)

  • 허지용;한종훈;김예진;허남국
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.737-744
    • /
    • 2016
  • The investigation of effects on fouling propensity with various viscosity of feed solutions would be better understanding for forward osmosis (FO) performance since the fouling propensity was directly influenced with solution viscosity. Therefore, this study was focused on the FO fouling with model foultants (humic acid, alginate) by altering solution viscosity with change of ionic strength (I.S) and $Ca^{2+}$ concentrations. In the comparison between humic acid and alginate, as expected, the alginate generally caused more severe fouling (almost 35.8 % of flux reduction) based on the solution characteristics (high viscosity) and fouling patterns (coil and gel layer). However, interesting point to note is that the fouling propensity of alginate was more severe even though it was applied with low viscosity of feed conditions (I.S = 20 mM, $Ca^{2+}=1mM$). This might be due to that crossed linked gel layer of alginate on the FO membrane surface could be best formed in the condition of $Ca^{2+}$ presence and higher I.S, and that is more dominant to fouling propensity than the low viscosity of feed solutions.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

정삼투식 담수공정의 유도용질 회수를 위한 흡수용액 성능 평가 (Performance Evaluation of Absorbent Solution for Draw Solute Recovery in Forward Osmosis Desalination Process)

  • 김영;이종훈;이공훈;김유창;오동욱;이정호
    • Korean Chemical Engineering Research
    • /
    • 제51권2호
    • /
    • pp.240-244
    • /
    • 2013
  • 정삼투식 담수화 기술은 차세대 담수 방법으로 주목을 받고 있으나, 상용화를 위해서는 유도용액 처리공정에서의 에너지 효율 향상을 필요로 한다. 중탄산암모늄을 유도용질로 이용하는 정삼투식 담수화 시스템은 정삼투 막모듈, 유도용액 분리공정, 유도용액 회수공정으로 이루어진다. 담수 생산을 위한 유도용액 분리공정에서 발생하는 암모니아와 이산화탄소의 혼합기체는 연속운전 및 경제성 향상을 위하여 회수되어 중탄산암모늄 용액으로 재농축되어야 한다. 이러한 유도용액 회수공정의 흡수액으로 희석된 중탄산암모늄 용액을 이용하는 방법이 있다. 본 연구에서는 용액의 농도에 따른 흡수성능 및 특성을 관찰하기 위한 실험을 수행하였고, 정삼투식 담수 공정에서 중탄산암모늄 용액을 분리된 암모니아와 이산화탄소 재농축에 이용할 수 있음을 확인하였다. 본 연구의 결과는 파일럿급 정삼투식 담수 공정의 설계 및 운전에 활용될 예정이다.

유도용액으로 비료를 사용한 정삼투 해수담수화에서 유도용액의 성능 평가 (Evaluating the Performance of Draw Solutions in Forward Osmosis Desalination Using Fertilizer as Draw Solution)

  • 정남조;김승건;이호원
    • 멤브레인
    • /
    • 제24권5호
    • /
    • pp.400-408
    • /
    • 2014
  • 유도용액으로 비료를 사용하는 정삼투식 해수담수화에서 유도용액의 성능을 평가하였다. 일반적으로 많이 사용되는 비료 중에서 삼투압, 용해도 및 pH 등을 고려하여 $NH_4NO_3$, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, KCl, $KNO_3$$KHCO_3$를 유도용액 후보군으로 선정하였다. 수투과선속, 질소와 인의 역용질선속 및 비역용질선속을 측정하여 유도용액의 성능을 평가하였다. KCl은 본 연구에서 선정된 유도용액 중에서 가장 높은 수투과선속을 나타낸 반면에 $(NH_4)_2HPO_4$는 가장 낮은 수투과선속을 나타내었다. $NH_4H_2PO_4$가 가장 낮은 역용질선속 및 비역용질선속을 보였으며, $(NH_4)_2HPO_4$ < $KNO_3$ < $NH_4NO_3$의 순서로 역용질선속 및 비역용질선속이 증가하였다. $NH_4H_2PO_4$는 비록 다른 유도물질에 비해 수투과선속이 낮으나 비료의 주요 성분인 질소와 인을 모두 포함하고 있을 뿐만 아니라 질소와 인의 역용질선속 및 비역용질선속이 다른 유도물질에 비해 매우 낮으므로 FDFO (fertilizer drawn forward osmosis)에서 효과적으로 사용될 수 있을 것으로 판단된다.

하수재이용 및 해수담수화를 위한 정삼투-역삼투 융합공정의 탄소배출량 분석 (Analysis of Carbon Emission from a Forward Osmosis and Reverse Osmosis Hybrid System for Water Reuse and Seawater Desalination)

  • 전종민;김수한
    • 대한토목학회논문집
    • /
    • 제42권3호
    • /
    • pp.351-357
    • /
    • 2022
  • 본 연구에서는 하수재이용과 해수담수화를 동시에 진행할 수 있는 규모 1,000 m3/d의 FO-RO 융합공정과 동일한 규모의 기존 SWRO 공정의 탄소배출량을 계산하여 비교 분석하였다. FO-RO 융합공정은 FO 공정을 도입하여 RO 공정 원수를 희석시킬 수 있기 때문에 RO 공정의 요구 압력이 감소되고 이는 곧 에너지소비량 감소로 이어진다. 에너지소비량에 따른 탄소배출량은 FO-RO 융합공정이 SWRO 공정보다 -0.73 kgCO2(coal로 전력생산 시) 낮으며, FO 공정 추가 건설로 인해 발생되는 탄소배출량은 +0.16 kgCO2로 계산되어 FO-RO 융합공정의 총 탄소 배출량이 더 낮은 것으로 나타났다. 하지만, Coal나 oil과 같은 화석연료로 전력을 생산하지 않고, 전력생산 시 탄소배출량이 적은 nuclear나 solar 등으로 사용하면 FO-RO 융합공정의 총 탄소배출량이 SWRO 공정보다 더 높은 것으로 나타났다. 즉, 탄소배출량 관점에서는 전력생산 시 필요 재료(예: coal, oil, nuclear, solar 등)에 따라 친환경적인 공정 판단 여부가 결정되므로 FO-RO 융합공정 도입 필요성을 좌우하는 핵심 요소라고 할 수 있다.

비가압식 막 공정을 통한 정삼투막 성능 평가 (Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System)

  • 김봉철;부찬희;이상엽;홍승관
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.