• Title/Summary/Keyword: Forming process design

Search Result 918, Processing Time 0.027 seconds

Application of Operating Window to Robust Process Optimization of Sheet Metal Forming (기능창을 이용한 박판성형의 공정 최적화)

  • Kim, Kyungmo;Yin, Jeong Je;Suh, Yong S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

An Integrated Process Planning System and Finite Element Simulation for Multistage Cold Forging (유한요소해석을 통합한 다단 냉간단조 공정설계시스템)

  • 최재찬;김병민;이언호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 1995
  • An integrated process planning system can determine desirable operation sequences even if they have little experience in the design of multistage cold forging process. This system is composed of seven major modules such as input module, pre-design module, formability check module, forming sequence design module, forming analysis module, FEM verification module, and output module which are used independently or in all. The forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics(diameter, height, and radius), the part geometry is expressed by a list of the primitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the dimensional tolerances and the proper sequence of operations for parts, is generated under the environment of AutoCAD. Several forming sequences generated by the planning system can be checked by the forming analysis module. The acceptable forming sequences can be verified further, using FE simulation.

  • PDF

A Study on Roll Forming Simulation of Under Rail (언더레일의 롤포밍 공정 시뮬레이션에 관한 연구)

  • Jeong, Sang-Hwa;Lee, Sang-Hee;Kim, Gwang-Ho;Kim, Jae-Sang;Kim, Jong-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

A study on forming characteristics of magnesium alloy (AZ31) on various temperatures (마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석)

  • LEE, Han-Gyu;La, Won-Bin;Hong, So-Dam;LEE, Chang-Whan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

Process Sequence Design in Cold Forging of Constant Velocity Joint Housing (등속조인트 하우징의 냉간단조 공정설계)

  • 이진희;강범수;김병민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

Development of Profile Design Method Based on Longitudinal Strain for Flexible Roll Forming Process (가변 롤 성형 공정시 길이방향 변형률에 근거한 제품 형상 설계 기술 개발)

  • Joo, B.D.;Han, S.W.;Shin, S.G.R.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.401-406
    • /
    • 2013
  • The use of roll-formed products increases every year due to its advantages, such as high production rates, reduced tooling cost and improved quality. However, till now, it is limited to part profiles with constant cross section. In recent years, the flexible roll forming process, which allows variable cross sections of profiles by adaptive roll stands, was developed. In this study, an attempt to optimize profile design for the flexible roll forming process was performed. An equation that predicts the longitudinal strain for part geometries with variable cross-sections was proposed. The relationship between geometrical parameters and the longitudinal strain was analyzed and investigations on the optimal profile design were performed. Experiments were conducted with a lab-scale roll forming machine to validate the proposed equation. The results show that the profile design method proposed in this study is feasible and parts with variable cross sections can be successfully fabricated with the flexible roll forming process.

A Study on the optimal Process Planning and Die design for manufacturing Bolts by multi-former (다단-포머용 볼트류 제작을 위한 최적의 공정 및 금형설계에 관한 연구)

  • 박철우;김철;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1307-1311
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

  • PDF

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

Process Design in Precision Press Forming of Electronic Components (정밀 전자부품 성형을 위한 소성가공 공정설계)

  • 변상규;최한호;강범수
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.79-91
    • /
    • 1995
  • Precision forming of electronic components has appeared to be competitive according to manufacturing cost and dimensional tolerances. Now domestic electronic companies have been involving in utilization of the finite element method in process design of precision forming. A forming process to produce an electronic component, aperture, has been inbestigated to find out forming defects during multi-operations. The applications of the commercial FEM software MARC show a possibility of defect in precision coining process among the whole multi-process. Thus the coining process of three-dimensional deformation is analyzed using DAMF-3D which has been developed in this lab with the rigid-plastic algorithm. The result f simulations by DAMF-3D provides clear description of the defect involved in the coining process.

  • PDF

Blank Design and Strain Prediction in Sheete Metal Forming Process (박판금속 성형공정에서의 블랭크 설계및 변형률 예측)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1810-1818
    • /
    • 1996
  • A new finite elemetn approach is introduced for direct prediction of bland shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to cylindrical cup drawing, square cup drawing, and fron fender forming to confirm its validity by demonstratin reasonable accurate numerical results of each problems. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.