• Title/Summary/Keyword: Forming Tool

Search Result 477, Processing Time 0.026 seconds

Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity (변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가)

  • 박문식;강경모;한덕수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

Springback Analysis of High Strength Steel Using Taguchi Method (다구치 실험계획법을 이용한 고강도 강판의 스프링백 분석)

  • Jeon, Tae-Bo;Kim, Hyung-Jong
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.80-85
    • /
    • 2006
  • HSS (high strength steel) is widely applied to reduce the weight but improve the strength in automobiles. This research has been peformed to secure a methodology to accurately predict the springback of HSS for successful tool and process designs in sheet stamping operations. We first peformed U-draw bending test to evaluate the springback characteristic. We then evaluated forming and springback processes using the 1-row model of the finite element method. Based on the peformance measure and parameters selected, extensive analyses of the factor effects on the springback have been made using experimental design concepts. We specifically selected Taguchi's orthogonal array, $L_{18}(2^1{\times}3^7)$, and the optimal level combination of the factors have been drawn from the analysis.

  • PDF

Improvement on the formability of magnesium alloy sheet by heating and cooling method(II) (가열냉각법에 의한 마그네슘합금의 판재성형성개선(II))

  • Manabe K.;Kang Dae-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.385-388
    • /
    • 2005
  • The use of magnesium alloys meets the need of reducing weight of componests(especially in automotive and aerospace industry) keeping unmodified their mechanical properties. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this study, the authors aim to understand the process condition which can lead to a successful improvement in the formability of a magnesium alloy(AZ31). Experiment and simulations of deep drawing were doned at various warm temperature for the blank and tool(holde and die)while the punch was kept at room temperature by cooling wale. in order to confirm that the deep drawing performance of magnesium alloy can be considerably enhanced with using the local heating and cooling technique.

  • PDF

Axisymmetric Multi-Stage Deep Drawing Die Design Analysis Using Finite Element Method (유한요소법을 이용한 축대칭 다단계 딥드로잉 금형 설계 해석)

  • Lee, Dong-Ho;Lee, Seung-Yeol;Geum, Yeong-Tak
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.594-602
    • /
    • 1998
  • The design analysis of axisymmetric, multi-stage deep drawing dies was performed using the rigid-viscoplastic finite element formulation. In the formulation the axisymmetric CFS algorithm was employed. Hill's non-quadratic normal anisotropic yield criterion and isotropic hardening rule were considered. For trial initial displacements and tool contact points. the geometric force equilibrium method was adopted. In order to see the validity of the formulation, the multi-stage deep drawing processes of shell-cylinder front part of hydraulic booster were simulated. The simulation showed good agreements with measurments and PAM-STAMP results.

  • PDF

Computer Simulation for Analysis of Flexible Manufacturing Systems (자동생산시스템의 분석을 위한 컴퓨터 시뮬레이션)

  • Cho, Kyu-Kab;Oh, Soo-Cheol;Lee, Moon-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.76-90
    • /
    • 1986
  • This paper discusses the analysis of flexible manufacturing systmes design using computer simulation method. The simulation language employed is SIMAN which is a powerful tool to model flexible manufacturing systems. The important characteristics of FMS, its design and operational problems, and structures based on the number of NC machine tools and their layout are discussed for the appli- cations of FMS to manufacturing. A new algorithm for forming part families and machine groups has been proposed and its software is also developed. Simulation procedure using SIMAN for analysis of FMS designs is discussed and two design problems are analyzed and evaluated to illustrate systemstic procedure for analysis of FMS.

  • PDF

Optimal Design of Dimension of Extrusion Die with Multi Stress Rings (다중보강링을 갖는 압출금형의 치수최적설계)

  • An, Sung-Chan;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2211-2218
    • /
    • 2002
  • In this study, an optimal design study has been made to determine dimensions of die and multi stress rings for extrusion process. For this purpose, a thermo-rigid-viscoplastic finite element program, CAMPform, was used fur forming analysis of extrusion process and a developed elastic finite element program fur elastic stress analysis of the die set including stress rings. And an optimization program, DOT, was employed for the optimization analysis. From this investigation, it was found out that the amount of shrink fitting incurred by the order of assembly of the die set should be taken into account for optimization when the multi stress rings are used in practice. In addition, it is construed that the proposed design method can be beneficial fur improving the tool life of cold extrusion die set.

High-pressure NMR application for α-synuclein

  • Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.2
    • /
    • pp.21-23
    • /
    • 2022
  • High-pressure (HP) NMR is a powerful method to elucidate various structural features of amyloidogenic proteins. Following the previous mini-review recapitulating the HP-NMR application for amyloid-β peptides of the last issue [J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)], the recent advancements in the HP NMR application for α-synuclein (α-Syn) are briefly summarized and discussed here. Although α-Syn is a well-known intrinsically disordered protein (IDP), several studies have shown that it can also exhibit heterogeneous yet partially folded conformations, which may correlate with its amyloid-forming propensity. HP NMR has been a valuable tool for investigating the dynamic and transient structural features of α-Syn and has provided unique insights to appreciate its aggregation-prone characters.

Monitoring and Analysis on Die Loads in Multi-stage Cold Forging Process Using Piezo-Sensors (금형블록에 장착된 압조센서를 활용한 다단 냉간단조 공정의 모니터링 및 분석)

  • Kang, S.M.;Kang, K.J.;Yeom, S.R.;Lee, K.H.;Kim, J.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.5-10
    • /
    • 2022
  • In multi-stage cold forging process, to enhance the productivity and product quality, in-site process monitoring technique by implanting sensors such as piezo-sensor and acoustic emission sensor has been continuously studied. For accurate analysis of the process, the selection of appropriate sensors and implantation positions are very important. Until now, in a multi-state forging machine, wedge parts located at the end of punch-set are used but it is difficult to analyze minute changes in die block-set. In this study, we also implanted sensors to the die part (die spacer) and compared signals from both sensors and found that sensing signals from die part showed enhanced process monitoring results.

Formation of Diamond/Mo/Ni Multi-Layer on Steel Substrate (강 표면의 다이아몬드/몰리브데늄/니켈 복합층의 생성)

  • Lee, H.J.;J.I. Choe;Park, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.37-37
    • /
    • 2002
  • Diamoncl/Mo/Ni multi-layers on SKH-51 steel substrate was prepared to improve the abrasive wear resistance of a tool and die by a commercial chemical vapor deposition unit and electro-plating. The diamond after 7 hour deposition had cuba-octahedral structure with 2~5$\mu\textrm{m}$ grains. The existence of non-ferrous metals such as chromium, nickel and molybdenum between diamond and SKH-51 substrate results in forming higher quality of diamond layer by retarding carbon diffusion in the diamond layer during deposition, and also improving hardness and wear resistance. Surface cracks on the film was sometimes observed by the difference of by the thermal expansion coefficients between the steel substrate and the deposited layers during cooling.

  • PDF

Modeling Laborers' Learning Processes in Construction: Focusing on Group Learning

  • Lee, Bogyeong;Lee, Hyun-Soo;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.154-157
    • /
    • 2015
  • Construction industry still requires a lot of laborers to perform a project despite of advance in technologies, and improving labor productivity is an important strategy for successful project management. Since repetitive construction works exhibits learning effect, understanding laborers' learning phenomenon therefore allows managers to have improved labor productivity. In this context, previous research efforts quantified individual laborer's learning effect, though numerous construction works are performed in group. In other words, previous research about labor learning assumed that sum of individual's productivity is same as group productivity. Also, managers in construction sites need understanding about group learning behavior for dealing with labor performance problem. To address these issues, the authors investigate what variables affect laborers' group level learning process and develop conceptual model as a basic tool of productivity estimation regarding group learning. Based on the result of this research, it is possible to understand forming mechanism of learning within the group level. Further, this research may contribute to maximizing laborers' productivity in construction sites.

  • PDF