• Title/Summary/Keyword: Forming Technique

Search Result 571, Processing Time 0.024 seconds

mechanical properties of Al-Cu-Zr alloy parts by superplastic forming (Al-Cu-Zr 합금 초소성 성형품의 기계적 성질)

  • 이영선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.163-170
    • /
    • 1999
  • Although the bulge forming technique is currently employed in commercial superplastic forming processes, the uniaxial tensile test is still the most commonly used method for the evaluation of the superplasticity of materials due to its simplicity in testing. However, the results obtained from the uniaxial tensile test can not be applied in analyzing the characteristics of the real parts formed in multi-axial stress state. In this paper, using the tensile test specimen obtained from the square cup manufactured by superplastic forming, tensile strength and elongation have been investigated according to the strain and cavity volume fraction. From the result of experiment, tensile strength and elongation are decreased according to the strain and cavity in Al-6%Cu-0.4%Zr alloy. On condition of uniaxial stress, cavity volume fraction is increased on linear according to the increasement of thickness strain. However, on condition of biaxial stress there are critical point( E t=1.5-1.6) that the slope, the ratio of cavity volume fraction and strain, have been changed. Therefore, cavity volume fraction is different with respect to stress condition, although the same strain.

  • PDF

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Smart antenna algorithm for CDMA downlink beam-forming (CDMA 하향링크의 빔 성형을 위한 스마트 안테나 알고리즘)

  • Ahn Chijun;Hong Youngmi;Jin Younghwan;Ahn Jaemin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.603-610
    • /
    • 2005
  • Beam-forming method based on the estimated channel information at the base station degrade the performance mismatching directional vector in case of systems which Frequency Division Duplex (FDD) center frequency of uplink and downlink are different. Also blind estimation technique which is to obtain directional vector of reverse link through received signal has disadvantage of hardware complexity increase. To solve these problems, in present paper, a smart antenna algorithm which is to improve the beam-forming complexity increase due to user number by appling the spatial fourier transform to be able to beam- forming toward a wanted direction through adjusting a obtained uplink weight function by estimating Angle-of-Arrival (AoA) to the competable form at the downlink is proposed. The proposed algorithm is integrated to the CDMA downlink transmitter and simulations are performed to confirm the performance as frame error rate at the receiver. As a result, the beam forming effect is confirmed and the performance gain with the proposed algorithm is comparable to ordinary smart antenna system.

Application of Operating Window to Robust Process Optimization of Sheet Metal Forming (기능창을 이용한 박판성형의 공정 최적화)

  • Kim, Kyungmo;Yin, Jeong Je;Suh, Yong S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

Spatial Smoothing Algorithm Using Spatial Interpolation Technique in Adaptive Array (공간보간 기법을 이용한 공간평활 적응 어레이 알고리듬)

  • 윤동현;문성훈;한동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.545-548
    • /
    • 2000
  • Adaptive array systems are hard to remove all the interferences when incident signals are coherent with a desired signal. In this paper, we propose a modified Duvall beamformer, which performs spatial smoothing using spatial interpolation technique to maintain the degree of freedom. The propose algorithm can minimize the loss on the degree of freedom due to spatial smoothing by forming subarrays with interpolated signals. Simulation results show that the proposed algorithm can remove all the interferences while conventional beamformer cannot.

  • PDF

New Technique of Spatial Printing of Materials for Arbitrary Shape Forming (임의의 형상 성형을 위한 새로운 공간 직접 성형 기술)

  • 이일한;정용재;김창경
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.107-114
    • /
    • 2000
  • In this study, we investigated the possibility of the application of the EzROBO system to direct shaping techniques which can make arbitrary shapes without any specific mold. We formed arbitrary shapes using raw materials of EH-260D (Epoxy+Binder) with the conditions of $250\mu\textrm{m}$ layer thickness, 0.2MPa working pressure, 20mm/sec working velocity, and 1.8mm needle thickness. The developed Spatial Printing Technique showed enhanced working velocity and lower cost than existing 3DP process, and is expected to replace the existing process through the process optimization in the future.

  • PDF

A Study on the Harmonic Reduction Technique in Three-Phase Square-Wave Inverters Formed by Single-Phase Inverters (단상 인버터로 구성된 3상 구형파 인버터의 고조파 저감기법에 관한 연구)

  • 조승연
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.355-359
    • /
    • 2000
  • This paper deal with the harmonic reduction technique in three-phase square-wave inverter system formed by single-phase inverter. To reduce the harmonics six single-phase inverters are used for forming multi-phase inverter and zig-zag connected output transformer for eliminating the harmonic 6(2k-1)$\pm$1 orders. And an ac filter is furnished at output side. Computer simulations show that the THD of the output voltage can be reduced immensely.

  • PDF

SMOLED equipment for Mass-production

  • Kim, Chang-Woo;Cho, Woo-Seok;Kim, Dong-Soo;Bae, Kyung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.133-136
    • /
    • 2002
  • It is very important to get a stable and large-capacity organic effusion source for achievement of OLED mass-production equipment. We present an organic effusion source with film uniformity less than ${\pm}$ 5%, the material charge volume, 300cc for $400{\times}400\;mm^2$ substrate. The fine metal shadow mask alignment technology, one of the color forming technique, also have to support more accurate and fast operating in mass-production. In this paper, we will describe the OLED mass-production equipment with the large volume effusion source and the precision shadow mask alignment technique.

  • PDF

A Weibull Model Building Technique for Reliability Assessment with Limited failure Data (신뢰도 평가에서 제한된 데이터를 이용한 와이블분포 모형화 기법)

  • Kim, Gwang-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.109-115
    • /
    • 2006
  • The Weibull distribution is a good candidate for accurate probabilistic model with its rich shape-forming ability and relatively simple CDF(cumulative distribution function). If there are sufficient information to get convincible mean and variance for a probabilistic event, reliable parameters of the Weibull distribution can be determined uniquely. However, sufficient information is not given as usual. There needs more deliberate model building method for that case. This Paper presents an effective parameter estimation technique for Weibull distribution with limited failure data.