• Title/Summary/Keyword: Forming Technique

Search Result 571, Processing Time 0.027 seconds

A UBET Analysis of The Warm Forming Process of Magnetron Anode (마그네트론 양극의 온간성형 공정의 UBET해석)

  • 조관형;배원병;김영호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.204-208
    • /
    • 1995
  • Copper magnetron anode of a microwave-oven consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex process ; vane blanking, pipe cutting and sliver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique(UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the total power consumption with respect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A Study on Improvement of Dimensional Accuracy of Cold forged Helical Gears using Back Pressure Forming (배압성형을 이용한 냉간단조 헬리컬 기어의 치수정밀도 향상에 관한 연구)

  • Kim, H.S.;Jung, H.C.;Lee, Y.S.;Kang, S.H.;Lee, I.H.;Choi, S.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.139-142
    • /
    • 2009
  • As important mechanical elements, gears have been used widely in power transferring systems such as automobile transmission and there have been several researches trying to make gear parts with cold or warm forging in order to reduce cost and time required to gear manufacturing process. Although forging processes of spur and bevel gears have been developed as practical level owing to active previous researches in Korea, the manufacturing of helical gear has been still depended on traditional gear cutting processes such as hobbing, deburring and shaving. In order to manufacture helical gears with cold forging process, a research project supported by government has been conducted by Daegu university, KIMS and TAK and this paper deals with effects of back pressure forming technique to cold forging of helical gear as a fundamental research.

  • PDF

The Determination of Elastic Constant for Ceramic Forming Material by Hybrid Method (하이브리드 방법에 의한 세라믹 성형재료의 탄성계수 결정)

  • Park Myong Kyun;Koo Bon Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.211-222
    • /
    • 2005
  • The ceramic forming materials are getting more important recently since they are used widely in repairing metal structures, welded metal structures and mechanical components etc. The determination of elastic constants for ceramic coating materials takes much time and efforts in experiment due to the brittleness of ceramic material itself. The aim of this research is to determine the Young's Modulus for ceramic metal coating material. In order to achieve the goal, the hybrid method which uses impulse hammer technique for experimental method and modal analysis of finite element method for computational method was used. The results show good agreement with existing experimental data on Young's Modulus.

High-Resolution Simulations of the Nuclear Star-Forming Ring

  • Kim, Sungsoo S.;Saitoh, Takayuki R.;Baba, Junichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2013
  • We have performed a set of high-resolution simulations of nuclear star-forming ring that results in an inward gas migration from the galactic disk. Our simulations consider gas heating/cooling, star formation, and supernova feedback. The galactic potential was obtained from a snapshot of a 6.3 million particle simulation of a galactic disk at 1 Gyr, which manifests spiral arms and pseudo-bulge. The potential was modeled with a combination of 3-dimensional spherical (for the pseudo-bulge) and 2-dimensional cylindrical (for the disk) multipole expansion technique. With such a potential model, one can easily set up various realistic 3-dimensional potential models by slightly changing the expansion coefficients. We have performed a set of simulations with a few million gas particles covering the central ~6 kpc of the disk for different pseudo-bulge sizes and non-axisymmetry, and we report the dependence of the gas inflow rate, size of the star-forming ring, and star-formation rate in the ring on the size and strength of the non-axisymmetry in the bulge.

  • PDF

Automotive Cruise Control (ACC) Radar Application of Digital Beam Forming Technique (Digital Beam Forming 기술의 차량 충돌 방지용 레이더 응용)

  • Park, Young-Jin;Kim, Kwan-Ho;Lee, Won-Tae;Oh, Hui-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1949-1951
    • /
    • 2003
  • 본 논문에서는 수신 측에서 Digital Beam Forming 기술을 응용한 새로운 개념의 차량 충돌 방지용 레이더를 소개한다. 이는 기존의 기술보다 더 넓은 범위에서 차량 탐색이 가능하고, 고해상도를 가지면서, 한 측정 단위 셀 내에서 여러 개의 물체를 찾아낼 수 있다. 제안된 방법은 기존 차량충돌 방지용 레이더의 송수신 안테나에 있어서의 많은 제약을 극복할 수 있는 방법이다.

  • PDF

THREE-DIMENSIONAL METAL FORMING SIMULATION WITH AUTOMATED ADAPTIVE TETRAHEDRAL ELEMENT GENERATION (지능형 사면체 요소망 자동생성기법을 이용한 삼차원 소성가공 공정 시뮬레이션)

  • Lee M. C.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.209-214
    • /
    • 2005
  • In this paper, finite element simulation of three-dimensional bulk metal forming processes is performed by an automated adaptive tetrahedral mesh generation scheme. A dynamic data exchange scheme is employed between tetrahedral mesh generator and forging simulator to minimize user intervention. Both number of elements and density distributions are controlled by the octree technique. The presented approach is applied to automatic forging simulation in order to evaluate the efficiency of the developed schemes and the simulation results are compared with $DEFORM^{TM}$.

  • PDF

Experimental Analysis for Forming $\Omega$-type Bellows ($\Omega$-형 벨로즈관의 성형을 위한 실험적 연구)

  • 구현성;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.347-358
    • /
    • 1994
  • The purpose of the study is to form $\Omega$-type bellows without any defect by specific rollers which are designed based on the volume distribution technique. In the present paper, we proposed a forming process of existing U-type bellows to a value-added $\Omega$-type in a progressive manner. It was developed to shape a perfect $\Omega$-type bellows after preforming from initial U-type bellows to final U-type bellows. To examine the suggested 'processing condition design' some experiments were performed in a real scale. It was found out that the spring back effect played a major role in deviating the geometry of formed bellows from the predicted one. The problems found in the experiment can be used as important information in manufacturing equipment for forming $\Omega$-type bellows.

  • PDF

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Roll Die Forming Process for Manufacturing Clutch Hub in Automotive Transmission (롤 다이 성형공정을 이용한 변속기 허브 클러치 제조)

  • Ko, D.H.;Lee, S.K.;Kwon, Y.N.;Kim, S.W.;Lee, H.S.;Park, E.S.;Kim, B.M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2011
  • The roll die forming (RDF) process is a new manufacturing technique for producing gear parts such as clutch drum and clutch hub in automotive transmission. In the RDF process, the material is deformed by a roll installed on a die set. Excellent productivity, low forming load and improved dimensional accuracy have quantitatively been shown to be the benefits of the RDF. In this study, the RDF process is applied to manufacture a clutch hub with a gear shaped part. A finite element (FE) analysis was performed in order to investigate the material strain field and dimension of the final product. Based on the result of the FE analysis, a RDF experiment was performed and the dimensional accuracy of the final product was validated. This work demonstrates that RDF is a process capable of producing a sound clutch hub.

A Study on the Extrusion Using Two-Step Processes for Manufacturing Helical Gear (2단계공정을 이용한 헬리컬기어 압출에 관한 연구)

  • Jung, Sung-Yuen;Park, Joon-Hong;Kim, Chang-Ho;Chang, Young-June;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, focusing on reducing a load in forming helical gears, the extrusion using two-step processes for manufacturing helical gear is proposed. The process is composed of the extrusion step in which spur gear to be used as a preform in next step is formed, and the torsion step in which the preform of spur gear is formed to helical gear. Upper-bound theory for the two-step process is applied and compared with the results of experiment. The result of upper-bound solution has a good agreement with that of the experiment and the FE analysis. The newly proposed method can be used as an advanced forming technique to remarkably reduce a forming load, to prolong a tool life, and to replace the conventional forming process of helical gears. Results obtained from the extrusion using two-step processes enable the designer and manufacturer of helical gear to be more efficient in this field.