• Title/Summary/Keyword: Forming Process

Search Result 3,284, Processing Time 0.026 seconds

A Study on Roll Forming Simulation of Under Rail (언더레일의 롤포밍 공정 시뮬레이션에 관한 연구)

  • Jeong, Sang-Hwa;Lee, Sang-Hee;Kim, Gwang-Ho;Kim, Jae-Sang;Kim, Jong-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

Finite Element Modeling of Rubber Pad Forming Process (고무 패드 성형 공정의 유한요소 모델링)

  • 신수정;이태수;오수익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

A study on forming characteristics of magnesium alloy (AZ31) on various temperatures (마스네슘 합금 판재 (AZ31)의 온도별 성형 특성 분석)

  • LEE, Han-Gyu;La, Won-Bin;Hong, So-Dam;LEE, Chang-Whan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, in the surge of global environmental issues, there has been a great attention to lightweight materials in purpose of saving energy. Magnesium alloys not only have low specific gravity, and superb specific stiffness, but are also excellent in blocking vibrations and electromagnetic waves. So demand for this material is getting bigger rapidly throughout the industry. In this study, we examined the improvement of formability of magnesium alloy AZ31 material in warm working. Drawing, bending and shearing process were carried out by varying the forming temperature and the forming speed, and the influence of the variables on each process was studied. In the experiments, the high forming temperature and low forming speed results in high formability in the drawing process and the bending process. In the shearing process, as the forming temperature increases, the length of the fracture decreases.

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Development of Manufacture Technology on Aluminum Rear Subframe by Hot Air Forming Method (열간가스성형 공법을 이용한 알루미늄 리어 서브프레임 제조기술 개발)

  • Kim, B.N.;Son, J.Y.;Lee, G.D.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.222-225
    • /
    • 2008
  • Due to new requirements of the automotive industry, concerning lightweight and non-corroding construction, new production methods, The Hot Air Forming process of aluminum alloys are of special interest. The disadvantage of aluminum alloy is the poorer formability compared to steel. The Hot Air Forming process is one of the forming process receiving recent attention. In the current study, Fabrication of aluminum rear subframe has been attempted using seam and seamless aluminum tubes. On the base of hot workability of the extruded tube and PAM-STAMP simulation results, Optimum condition for fabricating aluminum rear sub(lame parts by Hot Air Forming could be determined.

  • PDF

Automatic Process Planning Design and Finite Element Method for The Multistage Cold Forged Parts (다단 냉간단조품의 자동공정설계시스템과 유한요소법)

  • 최재찬;김병민;이언호;김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.

  • PDF

The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet (AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향)

  • Kwon, K.T.;Kang, S.B.;Kim, H.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.

Analysis of forming limit in tube hydroforming process (튜브 하이드로포밍 공정의 성형한계 해석)

  • Kim J.;Park C. D.;Kim Y. S.;Lee J. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.214-220
    • /
    • 2004
  • The automotive industry has recently shown a growing interest in tube hydroforming. Even though many structural parts in automotives have been produced from the cylindrical tubes, many failures - wrinkling, buckling, folding back, bursting and so on - are frequently experienced during the tube hydroforming process under improper forming conditions. In this paper, analytical studies are performed to determine the forming limits for the tube hydroforming process and demonstrate how the loading path influences the forming limit. The theoretical results for the forming limits of the wrinkling and bursting are then compared with the experimental results for an aluminum tube.

  • PDF

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim, H.T.;Kim, H.J.;Lee, D.J.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.138-142
    • /
    • 2006
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial fred. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D pretending on the tube hydroforming process of an automotive trailing arm were evaluated and compared with each other.

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim H. T.;Kim H. Y.;Kim H. J.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.243-246
    • /
    • 2005
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial feed. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D prebending on the tube hydroforming process of an automotive failing arm were evaluated and compared with each other.

  • PDF