• Title/Summary/Keyword: Forming Process

Search Result 3,273, Processing Time 0.029 seconds

Analysis on the corner cavity formation in backward extrusion process (후방압출공정의 corner cavity 형성에 관한 해석)

  • 김영호;변홍석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.236-239
    • /
    • 1995
  • In this paper,Upper bound analysis to predict the formation of corner cavity during the final stage of backward extrusion is used. The critical condition for corner cavity formation is obtained by upper bound analysis. The quantitive relationships between corner cavity formation and process parameters are studied. To broaden forming limit area, driven container and multi-step forming process is proposed. As a result of FEM, forming limit is enlarged. And this results is compared with the analytric results

  • PDF

Thermoelastic Properties of Porous Metals After Material Forming Processes (다공성 금속의 성형공정 후 열탄성 계수)

  • 이종원;김진원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF

Automated Forming Sequence Design System for Multistage Cold Forging Parts (다단 냉간단조품의 자동공정설계시스템)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

Determination of Forming Conditions of Fitting Pipes using Press Forming Processes (프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정)

  • Kim, Tae-Gual;Park, Young-Chul;Park, Kyoung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.

Development of Sheet Metal Forming Apparatus Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 박판성형 장비 개발)

  • Lee, H.M.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • Electromagnetic forming (EMF) method is one of high-velocity forming processes, which uses electromagnetic Lorentz force. Advantages of this forming technique are summarized as improvement of formability, reduction in wrinkling, non-contact forming and applications of various forming process. In this study, the EMF apparatus is developed. It is designed to be stored in 10 capacitors connected in parallel, each with a capacitance of $50{\mu}F$ and maximum working voltage of 5kV. The system has capacitance of $500{\mu}F$ and maximum stored energy of 6.25kJ. And EMF experiments are carried out to verify the feasibility of the EMF apparatus, which has enough forming force from the results of EMF experiment. In addition, peak current carrying a forming coil is predicted from theoretical background, and verified the predicted value compared with experimental value using the current measurement equipment. Consequently, EMF apparatus developed in this study can be applied to various EMF researches for commercialization.

Fabrication of Hollow Cylinder Tank Using Superplastic Forming Technology

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.799-803
    • /
    • 2008
  • The possibility of manufacturing titanium hollow cylinder tank for ramjet engine was demonstrated with superplastic forming of subscale article. An innovative manufacturing method to produce complex configuration from titanium multi-sheets by low hydrostatic pressure was presented. Finite element analysis on superplastic blow forming process has been carried out in order to improve the forming process when manufacturing subscale hollow cylinder structure using Ti-6Al-4V multi-sheets. The simulation focused on the reduction of forming time and obtaining finally required shape throughout investigating the deformation mode of sheet according to the forming conditions and die geometry. From pre-sized titanium sheets, near net shape of hollow cylinder tank is obtained by superplastic blow forming conducted using gas pressure of 15bar at 1148K. The result shows that the manufacturing method with superplastic forming of multi-sheets of titanium alloy has been successful for near net shape forming of subscale hollow cylinder tank of ramjet engine.

  • PDF

A Study on the Improvement of the Forming Limit in the Forged Hige Product (힌지 부품의 단조공정에서 성형한계 개선에 관한 연구)

  • 김영호;박재훈;손경호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.240-243
    • /
    • 1995
  • This paper describes the process design and forming limit of the forged hinge produec with the axial protrusion on the sheet metal. Process design is consisted of preform and forging process. In this case, the forged hinge product can be formed in a single workpiece without assembling another axial part to it. Process design of the forged hinge product is analyzed by the commercial FEM program. It is known that process design with perform process, shown by the FEM simulaion, can bring the forming limit of the forged hinge product to a great expansion.

  • PDF

MCPs Product and Process Design of Mixed Materials Using Axiomatic Design (공리적 설계를 이용한 발포제 혼합재료의 MCPs 제품 및 공정 설계)

  • 이경수;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In chemical forming process, mixed materials of LDPE, EVA and forming agent are used. However mechanical properties has been dropping remarkably through this forming process. In this study, Above materials(LDPE, EVA) were used in microcellular foaming injection process. And various effective factors in this process were selected by Axiomatic approach and systematically estimated by DOE(Design of Experiments). As a results, injection type and rate of mixing resins have more influence on forming rate than other factors.

  • PDF

Optimization of Sheet Metal Forming Process Based on Two-Attribute Robust Design Methodology (2속성 강건 설계를 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Fractures and wrinkles are two major defects frequently found in the sheet metal forming process. The process has several noise factors that cannot be ignored when determining the optimal process conditions. Therefore, without any countermeasures against noise, attempts to reduce defects through optimal design methods have often led to failure. In this study, a new and robust design methodology that can reduce the possibility of formation of fractures and wrinkles is presented using decision-making theory. A two-attribute value function is presented to form the design metric for the sheet metal forming process. A modified complex method is adopted to isolate the optimal robust design variables. One of the major limitations of the traditional robust design methodology, which is based on an orthogonal array experiment, is that the values of the optimal design variables have to coincide with one of the experimental levels. As this restriction is eliminated in the complex method, a better solution can be expected. The procedure of the proposed method is illustrated through a robust design of the sheet metal forming process of a side member of an automobile body.

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.