• Title/Summary/Keyword: Forming Process

Search Result 3,277, Processing Time 0.028 seconds

An Analysis of Backward Extrusion Process with Torsion (비틀림을 이용한 후방압출 공정의 해석)

  • 허진혁;김영호;박재훈;진영은;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.846-849
    • /
    • 2000
  • In this paper backward extrusion process with lower die rotation was studied to improve the conventional backward extrusion problems ; requirement of large forming machine, the difficulty to selecting of die material caused by high surface pressure, high cost of forming machine caused by improvement of noise and vibration, and etc. In this experiment, model material, plasticine, was used of specimen. The result values of torsional and conventional backward extrusions were analyzed and compared. FE-simulation is used for analysis with DEFPRM-3D. These results show that the torsional backward extrusion is very useful process because this process can obtain the homogeneous deformation, low forming load. Decreasing forming load improves die life and makes it possible to use press of relatively low capacity. Also this process can reduce corner cavity, improve the initial cast-structure, owing to the high deformation and uniform starin distribution.

  • PDF

A study on the cutting punch shape about roll forming process (롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구)

  • Cheong, Mun-Su
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.

A Study on Roll Wear in the Roll Forming Process (롤포밍 공정에서의 롤 마모에 관한 연구)

  • Kang, Byung-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1881-1888
    • /
    • 2003
  • This study show a numerical method to predict roll wear in the roll forming process. Archard's wear model was reformulated in an elemental form to predict volume of roll wear and then wear depth on the roll was calculated using the results of finite element analysis. Abrasive wear occurs at contact area in the roll forming process and the results of simulation are compared with experimental data in production line. The wear simulation approach with 3-D FEM program for roll forming process, SHAPE-RF is in good agreement with it in tendency.

A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet (마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구)

  • Son, Young-Ki;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

Development of the Tube Press Forming Process for the CTBA of the Rear Suspension Assembly (후륜 현가장치용 CTBA 튜브 프레스 성형공정 개발)

  • Kim, S.H.;Kim, K.P.;Park, C.I.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • Process design is carried out for a press forming of a CTBA in the rear suspension assembly based on the result of the finite element analysis. The analysis simulates the two-stage stamping process with the initial design and it fully reveals the unfavorable mechanism which develops inferiorities during forming. In this paper, a new design guideline is proposed to modify the process and tool shapes for a single-stage forming process. With the improved tool design, prototypes are fabricated after several try-out processes. Results of the durability tests show that the design requirement of the part is satisfied and the effective weight reduction is achieved.

Effect of processing parameters on the sheet forming of titanium alloy (타이타늄 합금의 판재성형성에 미치는 공정변수의 영향)

  • Kim, Jeoung-Han;Seo, Sang-Hyun;Lee, Young-Seon;Kim, Young-Suk;Yeom, Jong-Taek;Hong, Jae-Keun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.148-151
    • /
    • 2009
  • This paper presents an experimental study of deep-drawing and rubber-pad forming process using titanium alloy sheet. The process and results of the work carried out to investigate the capability of the process and to optimize th process parameters to ensure a sound forming. Room and high temperature tensile tests were carried out at various process conditions and microstructural evaluation was investigated. The experimental investigation was done using 150 ton hydraulic press to produce a deep-drawn part. Both graphite lubricant and polyethylene sheet were essential for defect-free product. Regarding the rubber-pad forming, reasonable formability was obtained only for pure-Ti not for Ti-6Al-4V.

  • PDF

Dynamic Modeling and Simulation of a Hydro-forming Process (하이드로 포밍 공정의 동특성 해석 및 시뮬레이션)

  • Lee, Woo-Ho;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.122-132
    • /
    • 1999
  • This study describes a dynamic model of the hydroforming process which is used for precision forming of sheet metals. To help the controller design for the control of the forming pressure needed for this process as well as to investigate the effect of system parameters on the dynamic behavior, dynamic modeling is performed with emphasis on hydraulic servo system which actuates the forming machine. Since the model contains several unknown parameters, these were estimated via a least square parameter identification method. Based upon the identified model, a series of simulations were performed for various operating conditions. The results were compared with those of the experiments to verify the validity of the proposed model. The comparison study shows that the proposed dynamic model can describe dynamic behavior of the forming pressure of the hydroforming process to desirable accuracy.

  • PDF

Development of the Backward Tracing Scheme of FEM and Its Application to Initial Blank Design in Sheet Metal Forming (유한요소법을 이용한 역추적기법 개발 및 판재성형의 초기블랭크 형상설계에 적용)

  • 최한호;강경주;구태완;임학진;황상문;강범수
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.348-355
    • /
    • 2000
  • The backward tracing scheme(BWT) of the finite element method has been extended lot the design of sheet blank in three-dimensional deformation. Originally the scheme was developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform or initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. For the confirmation of the analytic result derived from the backward tracing simulations as well as forward loading simulations, a series of experiment were carried out. The experiments include the first trial sheet forming process with a rectangular blank, an improved process with a modified blank preform and the final process with an optimum blank resulted from the backward tracing scheme. The experiments show that the backward tracing scheme has been implemented successfully in blank design of sheet metal forming.

  • PDF

Design of Roll Forming Machine for Fail Safe Chord Forming Process (페일 세이프 코드의 성형가공 롤 포밍 머신의 설계)

  • Jung, Won-Jae;Park, Min-Hyeok;Choi, Jin-Kyu;Nam, Kwang-Sik;Shang, Zhao;Lee, Jae-Hyung;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.44-49
    • /
    • 2014
  • Roll forming technology has a problem in that it depends only on experience without accurate data in the actual field. To solve this problem, it is necessary to procure accurate data during the roll forming process. To this end, we determined the operating force and the material thickness by implementing several changes to those variables during an experiment. This study compares the FEA results and experimental results. Experimental results were used for the basic data of the design. The FEA results show that the roll forming machine is operating accurately and safely. And, a comparison of the results shows that the design of the automatic roll forming machine is operating in the right way. This design of an automatic roll forming machine will be helpful for many areas of the industry.

Optimization of Superplastic Forming Process (초소성 성형공정 최적화)

  • Lee, Jeong-Min;Hong, Seong-Seok;Kim, Yong-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.207-214
    • /
    • 1998
  • Influence of final thickness distribution in superplastic forming processes on mechanical properties of the product becomes very crucial. We should improve the thickness distribution of products by combining process parameters adequately In this paper we adopt a non-linear optimization technique for optimal process design of superplastic forming. And optimum design variable which makes the most adequate thickness distribution in combined stretc/blow forming and blow forming is predicted by this optimization scheme and rigid-viscoplastic finite element method.

  • PDF