• 제목/요약/키워드: Forming Parameters

검색결과 706건 처리시간 0.02초

스테인레스 강판의 가공특성과 성형성에 관한 고찰 (Review of Formability and Forming Property for Stainless Steel)

  • 김영석;박진기;안덕찬;김영환
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.193-205
    • /
    • 2011
  • Because of its rustproof property, stainless steel is widely used in kitchen appliances, building materials, electronics, chemical plants and automobile exhausts. In addition, the utilization of stainless steel for fuel cell application is growing. As the demand for this material increases, it is necessary to study the basic properties of stainless steel such as corrosion resistance, heat transfer, formability, cutting or shearing ability and weldability. In this article, the mechanical properties, formability and press forming performance of stainless steel are reviewed. Since temperature and strain rate affect the press forming performance of STS304(austenitic) stainless steel, the influence of these parameters on the plastic behavior should be investigated. Moreover, measures for the prevention of ridging of STS430(ferritic) and delayed fracture of STS430, which respectively appear during and after press forming, should be considered. Recently, stainless steel sheets with a thickness lower than 0.2 mm have been widely used in applications for mobile phone, digital camera and fuel cell separator. Therefore, there is a growing interest of studying the grain size effect and plasticity at the crystal scale in order to understand the anisotropic behavior and micro forming ability of thin sheets. This review paper was written with the objective of helping engineers and researchers to understand the forming characteristics of stainless steel and to establish standards in plastic forming techniques.

다단 성형 기술을 이용한 차체 부품 개발 (The Study of Manufacturing Technology for a Sill Side by Roll Forming)

  • 김동규;한상욱;전형준;천세환;문영훈
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발 (Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process)

  • 우영윤;문영훈
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

내덴트성 향상을 위한 고강도 도어 외판 개발 (Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance)

  • 김익수;김태정;정연일;윤치상;임종대
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.

Effects of needle punching process and structural parameters on mechanical behavior of flax nonwovens preforms

  • Omrani, Fatma;Soulat, Damien;Ferreira, Manuela;Wang, Peng
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.157-168
    • /
    • 2019
  • The production of nonwoven fabrics from natural fibers is already expanding at an industrial level for simple curvature semi-structural part in the automotive industry. To develop their use for technical applications, this paper provides an experimental study of the mechanical behavior of flax-fiber nonwoven preforms. A comparison between different sets of carded needle-punched nonwoven has been used to study the influence of manufacturing parameters such as fibers' directions, the area and the needle punching densities. We have found that the anisotropy observed between both directions can be reduced depending on these parameters. Furthermore, this work investigates the possibility to form double curvature parts such as a hemisphere as well as a more complex shape such as a square box which possesses four triple curvature points. We propose a forming process adapted to the features of the nonwoven structure. The purpose is to determine their behavior under high stress during various forming settings. The preforming tests allowed us to observe in real time the manufacturing defects as well as the high deformability potential of flax nonwoven.

중공축 소재를 이용한 전후방 복합압출의 성형 특성 (Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe)

  • 김성현;이호용
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

회귀분석을 활용한 비정형롤판재성형 공정의 형상 예측 (Shape Prediction of Flexibly-reconfigurable Roll Forming Using Regression Analysis)

  • 박지우;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.182-188
    • /
    • 2016
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to producing multi-curvature surfaces by controlling the strain distribution along longitudinal direction. In FRRF, a sheet metal is shaped into the desired curvature by using reconfigurable rollers and gaps between the rollers. As FRRF technology and equipment are under development, a simulation model corresponding to the physical FRRF would aid in investigating how the shape of a sheet varies with input parameters. To facilitate the investigation, the current study exploits regression analysis to construct a predictive model for the longitudinal curvature of the sheet. Variables considered as input parameters are sheet compression ratio, radius of curvature in the transverse direction, and initial blank width. Samples were generated by a three-level, three-factor full factorial design, and both convex and saddle curvatures are represented by a quadratic regression model with two-factor interactions. The fitted quadratic equations were verified numerically with R-squared values and root mean square errors.

B.T.Pin을 이용한 치형부품의 측면 냉간성형공법 개발 (Development of Side Forming Technology for the Tooth Part Using B.T.Pin in Cold Forming Process)

  • 이진수;박세제;김병민;김동환
    • 소성∙가공
    • /
    • 제26권2호
    • /
    • pp.95-100
    • /
    • 2017
  • In this study, the method of process design for side forming of a tooth part used for a component of automobile transmission was suggested using FE-simulations. To develop the side forming for the tooth part, in this paper, the shape factors of B.T.Pin was considered as design parameters. The shape factors of B.T.Pin were selected to be the round of pin, reinforced angle and reinforced length. Based on FE simulation results, appropriate shape factor without causing any defects was selected. In addition, to increase the strength of pin, the combination of shape factor having minimum stress after side forming was selected using FE-simulation. In addition, with design of a die set, cold side forming of the tooth part was experimented to estimate effectiveness of the designed B.T.Pin. From experiments, it was found that the tooth part with complete formation of the tooth was obtained without making any forming defects and punch fracture.

전자기력 자유벌지 실험을 위한 성형코일 설계 및 3-D 해석비교 (Design of a Free Bulge Test Coil Using Electromagnetic Forces and Comparison between Experimental and Numerical Results)

  • 김홍교;노학곤;강범수;김정
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.431-438
    • /
    • 2014
  • For electromagnetic forming(EMF) the most important feature is a forming coil which creates the electromagnetic force(Lorentz force), using current density and a magnetic field. Most previous papers have concentrated on the final configuration of the blank or the efficiency of EMF process. Studies focused on the design parameters affected by the forming coil performance have not been conducted. In order to design a suitable forming coil for an object, the current study uses LS-DYNA EM-Module to not only optimize the coil but also to examine the effect of coil performance. By this method a suitable forming coil was made and tested to determine whether or not good formability was achieved in a free bulge test Numerical analysis was also used. The workpiece was Al 1100-O with a thickness of 1.27mm and the coil was made from copper CW004A, which has good electrical conductivity and is suitable for electrical components.