• Title/Summary/Keyword: Forming Length

Search Result 354, Processing Time 0.026 seconds

Optimal Design of Tire Tread Pattern Using Quality Engineering (품질공학을 이용한 트레드 패턴 인자의 최적설계)

  • Jeon, Tae-Joon;Kim, Soo-Dong;Park, Sung-Ho
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • The tread pattern of tire is represented by a great number of design factors, such as groove breadth of circumference direction, breadth direction, rib breadth, block length, kerfs, tread breadth and tread radius, etc. It is not efficient in time and cost to analyze the rolling resistance for a great number of real tread pattern, because It requires lots of pattern forming handwork. In order to optimize tread pattern for rolling resistance, the experiment is planed and analyzed by Taguchi's robust design methods. We identified the important design factors for Rolling Resistance, determined the optimal condition and calculated prediction value which is related. Using the experiment data and the analyzed data, we developed the program which could predict Rolling Resistance. It is expected that time and cost may be reduced in designing and developing new tire tread pattern.

  • PDF

Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network (신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계)

  • 김동환;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

Die Stress and Process Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이에 따른 컨덴서 튜브 직접압출 공정 및 금형강도 해석)

  • Lee, J.M.;Kim, B.M.;Jung, Y.D.;Jo, H.;Jo, H.H.
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.214-220
    • /
    • 2003
  • In the case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. There have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length in porthole die. The welding chamber height in condenser tube was calculated by using finite element method. Forming analysis results for condenser tube would provide useful information for the optimal design of porthole die.

Development of a Process to Simultaneously Weld and Extrude Pipe Using a Spring Type Wire Material (스프링형상 와이어소재를 이용한 접합동시 파이프 압출성형공정 개발에 관한 연구)

  • Ku, K.M.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.317-322
    • /
    • 2015
  • A process for the concurrent welding and extruding of pipe was designed for continuous production of fin tubes. Unlike a conventional pipe extrusion, the new process is able to extrude a pipe continuously without limit of length by using spring type wire material. The current paper provides the basic research for welding during the extrusion using a spring type wire material. The object of the current study is to investigate the possibility that the spring type wire material could be extrude into a welded pipe. The appropriate extrusion ratio was selected through investigation of loads using computer simulations. As a result, experiments showed that pipe could be welded and simultaneously extruded with spring type wire material of aluminum. The tensile strength of the welded and extruded aluminum pipe can reach 80% of tensile strength of original aluminum feedstock.

Design of a Condenser Lens System using a Thin Lens Combination (얇은 렌즈 조합을 이용한 집속 렌즈 시스템 설계)

  • Lim, Sun-Jong;Choi, Ji-Yeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.517-522
    • /
    • 2011
  • Most of SEM is double condenser lens system. Two condenser lenses are required to provide the high demagnification ratios necessary for forming nanometer probes. The thin lens concept provides a highly useful basis for preliminary calculations in a broad range of situations. It is an easy way to understand the electron beam paths in column. Demagnification is easily calculated by this method. In this paper, we present design processes for condenser lens's demagnification by using thin lens combination model. Also, we verify the reliability of our design processes by comparing the modeled demagnification with these of corrected condenser lens.

Application of the induction type furnace for HGL (용융아연도금라인(HGL)의 Induction Type Furnace 적용)

  • 이만식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.111-118
    • /
    • 1999
  • This article describes the basic engineering concepts to be considered in the application of an induction heating furnace in the hot-dip galvanizing line. Experience in the Dongkuk project in Pohang, has shown that this arrangement has many advantages over the conventional method of using a combustion-gas heated furnace. Investment and operating costs are lower, the line length is much shorter, line operation is more convenient, air pollution is reduced, and the coated strip at of top-quality. As these benefits become well known, it is anticipated that the concept of induction heating will be more widely used in both new and revamped process lines. Induction heating is suitable for the production of Commercial Quality hot galvanized coils. More research is required to extend the present concept to the production of higher forming grades such as Drawing, Deep Drawing and Extra Deep Drawing Quality steels. A combination of induction heating and combustion-gas heating may lead to the way to the processing of these qualities of strip.

  • PDF

Effects of Stock Characteristics on Paper Bulk

  • Lee, Jin-Ho;Park, Jong-Moon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.423-426
    • /
    • 2006
  • Paper has fibers and fines network structure and it is strongly affected by interface bonding between fibers. Depending on the inter-fiber bonding, paper bulk is determined. Fines play an important roll in Campbell and consolidation effect through wet pressing and drying operations. Refined Sw-BKP, Hw-BKP and BCTMP fines were used to investigate the fines effect. Wet-web strength, breaking length, scattering coefficient, and hydrodynamic specific volume were measured. According to the result of experiments, chemical and morphological compositions of fines do not strongly affect to wet-web forming, but strongly affect to drying operations which form hydrogen bonding among fiber-fines-fiber matrixes. Paper bulk should be controlled by the extent of hydrogen bonding between fibers during drying operations.

  • PDF

Optimum Design of Moving Carrier for Minimizing Deflection in Al5083 Thick Plate (대면적 알루미늄 후판의 수평 이송을 위한 캐리어 최적설계)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.389-393
    • /
    • 2013
  • One of the most efficient designs for manufacturing LNG tank is the Moss spherical type because it has been validated through precise analyses with respect to reliability and construction safety by stress analysis. The Moss spherical tank is assembled with hundreds of Al thick plate patches that are deformed to curved shape at elevated temperature and welded together. It is essential to evaluate the amount of deflection in the Al5083 thick plate when the patch is transferred from the heating chamber to the forming die since the patch has a length of 12,000 mm and a thickness of 60 mm. Based on FE analysis results, a design procedure for minimizing deflection in Al5083 thick plate during transfer using a moving carrier is demonstrated in this paper.

Interaction of Tip Vortices Generated by a Split Wing

  • Youn, Won Suk;Han, Yong Oun;Lee, Dong Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • To reduce the strength of tip vortex of the fixed wing, a horizontal wing-let splitted into two parts was utilized, and the interaction between vortices generated by these wing-lets was investigated by the hot-wire anemometry. The process of vortex forming and merging was clarified by measurements of velocity vectors and their contours at five downstream cross-sections; 0.05C(chord length), 0.2C, 0.5C, 1.0C and 2.0C. Both vortex-lets formed by each wing-lets rotate counterclockwise and merge into a larger single vortex within a short downstream distance, 0.5C in this case. The strength of the merged tip vortex turned out to become smaller than that of the plain wing tip near the vortex core.

  • PDF