• Title/Summary/Keyword: Formation of precipitates

Search Result 199, Processing Time 0.025 seconds

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Neutralization of Acid Rock Drainage from the Dongrae Pyrophyllite Deposit: A Study on Behavior of Heavy Metals (동래 납석광산 산성 광석배수의 중화실험: 중금속의 거동 특성 규명)

  • 염승준;윤성택;김주환;박맹언
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • In this study, we have investigated the geochemical behavior and fate of heavy metals in acid rock drainage (ARD). The ARD was collected from the area of the former Dongrae pyrophyllite mine. The Dongrae Creek waters were strongly acidic (pH : 2.3~4.2) and contained high concentrations of $SO_4$, Al, Fe, Mn, Pb, Cu, Zn, and Cd, due to the influence of ARD generated from weathering of pyrite-rich pyrophyllite ores. However, the water quality gradually improved as the water flows downstream. In view of the change of mole fractions of dissolved Fe, Al and Mn, the generated ARD was initially both Fe- and AA-ich but progressively evolved to more Al-rich toward the confluence with the uncontaminated Suyoung River. As the AR3 (pH 2.3) mixed with the uncontaminated waters (pH 6.5), the pH increased up to 4.2, which caused precipitation of $SO_4$-rich Fe hydroxysulfate as a red-colored, massive ferricrete precipitate throughout the Dongrae Creek. Accompanying the precipitation of ferricrete, the Dongrae Creek water progressively changed to more Al-rich toward downstream sites. At the mouth of the Dongrae Creek, it (pH 3.4) mixed with the Suyoung River (pH 6.9), where pH increased to 5.7, causing precipitation of Al hydroxysulfate (white precipitates). Neutralization of the ARD-contaminated waters in the laboratory caused the successive formation of Fe precipitates at pH<3.5 and Al precipitates at higher pH (4~6). Manganese compounds were precipitated at pH>6. The removal of trace metals was dependent on the precipitation of these compounds, which acted as sorbents. The pHs for 50% sorption ($pH_{50}$) in Fe-rich and Al-rich waters were respectively 3.2 and 4.5 for Pb, 4.5 and 5.8 for Cu, 5.2 and 7.4 for Cd, and 5.8 and 7.0 for Zn. This indicates that the trace metals were sorbed preferentially with increasing pH in the general order of Pb, Cu, Cd, and Zn and that the sorption of trace metals in Al-rich water occurred at higher pH than those in Fe-rich water. The results of this study demonstrated that the partitioning of trace metals in ARD is not only a function of pH, but also depends on the chemical composition of the water.

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

Effects of pulsed laser surface remelting on microstructure, hardness and lead-bismuth corrosion behavior of a ferrite/martensitic steel

  • Wang, Hao;Yuan, Qian;Chai, Linjiang;Zhao, Ke;Guo, Ning;Xiao, Jun;Yin, Xing;Tang, Bin;Li, Yuqiong;Qiu, Shaoyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1972-1981
    • /
    • 2022
  • A typical ferritic/martensitic (F/M) steel sheet was subjected to pulsed laser surface remelting (LSR) and corrosion test in lead-bismuth eutectic (LBE) at 550 ℃. There present two modification zones with distinct microstructures in the LSRed specimen: (1) remelted zone (RZ) consisting of both bulk δ-ferrite grains and martensitic plates and (2) heat-affected zone (HAZ) below the RZ, mainly composed of martensitic plates and high-density precipitates. Martensitic transformation occurs in both the RZ and the HAZ with the Kurdjumov-Sachs and Nishiyama-Wassermann orientation relationships followed concurrently, resulting in scattered orientations and specific misorientation characteristics. Hardnesses of the RZ and the HAZ are 364 ± 7 HV and 451 ± 15 HV, respectively, considerably higher than that of the matrix (267 ± 3 HV). In oxygen-saturated and oxygen-depleted LBE, thicknesses of oxide layers developed on both the as-received and the LSRed specimens increase with prolonging corrosion time (oxide layers always thinner under the oxygen-depleted condition). The corrosion resistance of the LSRed F/M steel in oxygen-saturated LBE is improved, which can be attributed to the grain-refinement accelerated formation of dense Fe-Cr spinel. In oxygen-depleted LBE, the growth of oxide layers is very low with both types of specimens showing similar corrosion resistance.

Effect of Combined Addition of Ca and Y on Aging Behavior of Extruded AZ91 Magnesium Alloy (Ca과 Y 복합 첨가가 AZ91 마그네슘 압출재의 시효 거동에 미치는 영향)

  • Kim, H.J.;Kim, Y.M.;Bae, J.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.160-166
    • /
    • 2022
  • The purpose of this study is to investigate the effects of combined addition of Ca and Y on the precipitation and age-hardening behavior of an extruded AZ91 alloy by conducting the aging treatment at 200 ℃ for hot-extruded AZ91 and AZ91-0.3Ca-0.2Y alloys. In the AZ91 alloy, many Mg17Al12 discontinuous precipitate (DP) bands formed during air cooling immediately after extrusion are present, whereas in the AZ91-0.3Ca-0.2Y alloy, a few DP bands and numerous Al2Y, Al8Mn4Y, and Al2Ca phase particles are distributed along the extrusion direction. The peak-aging time of the AZ91-0.3Ca-0.2Y alloy is 16 hours, twice that of the AZ91 alloy. Although both alloys have similar hardness before aging treatment, the hardness after peak-aging treatment (i.e., peak hardness) of the AZ91-0.3Ca-0.2Y alloy is higher than that of the AZ91 alloy, as 93.1 and 88.7 Hv, respectively. The microstructures of both peak-aged alloys comprise DPs and continuous precipitates (CPs). However, the peak-aged AZ91-0.3Ca-0.2Y alloy has a smaller amount of DPs and a larger amount of CPs than the peak-aged AZ91 alloy. Additionally, the inter-particle spacings of DPs and CPs in the former are significantly narrower than those in the latter. These results demonstrate that the addition of small amounts of Ca and Y to a commercial AZ91 alloy considerably affects the formation rate, size, and amount of CPs and DPs during aging and resultant age-hardening behavior.

Feasibility Tests on Struvite Production from Liquid Fertilizer by Utilizing Ferronickel Slag and Sewage Sludge Ash (페로니켈슬래그와 하수슬러지소각재를 이용한 액비로부터 스트루바이트 생산 타당성 연구)

  • Kim, Hyeon;Kwon, Gyutae;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.316-327
    • /
    • 2018
  • Liquid fertilizers made from livestock manure contain high concentrations of nitrogen and phosphorus and thus are used as a fertilizer. However, excessive use of liquid fertilizer causes eutrophication of agricultural land and nonpoint source pollution. In this study, as a means of lowering the nutrient concentrations, struvite ($MgNH_4PO_4{\cdot}6H_2O$) production from the liquid fertilizer was investigated. When liquid fertilizers produced in Gyeonggido were analyzed, its characteristics differed by region and season, but the phosphorus concentration was commonly lower than that of nitrogen. When $K_2HPO_4$ and $MgCl_2$ were added to the liquid fertilizers, the optimal pH for struvite formation was pH 9.5. For environmentally friendly sources of magnesium and phosphate, ferronickel slag (FNS) and sewage sludge ash (SSA) were suspended in deionized water and extracted by sulfuric acid with various mass ratios. The optimum conditions for extracting FNS and SSA were 4.0 M sulfuric acid and 0.35 mass ratio of sulfuric acid to sewage sludge ash, respectively. For forming struvite, 0.233 L of SSA leachate (SSAL) was added into 0.3 L of liquid fertilizer containing 2,586 mg/L of ammonia and 110 mg/L of phosphate, pH was then adjusted to pH 9.5 using 10 M of NaOH. Afterwards 0.333 L of FNS leachate (FNSL) was added to this mixed solution. After a reaction for 1 hr at room temperature, the remaining concentrations of magnesium, ammonium, and phosphate were less than 50 mg/L, 500 mg/L and 150 mg/L, respectively, and 30 g of precipitates were obtained, most of which were struvite.

Effects of Cryogenic Treatment Cycles on Residual Stress and Mechanical Properties for 7075 Aluminum Alloy (극저온 열처리가 7075 알루미늄 합금의 잔류응력과 기계적 특성에 미치는 영향)

  • Kim, Hoi-Bong;Jeong, Eun-Wook;Ko, Dae-Hoon;Kim, Byung-Min;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this study, the effects of cryogenic treatment cycles on the residual stress and mechanical properties of 7075 aluminum alloy (Al7075) samples, in the form of a tube-shaped product with a diameter of 500 nm, were investigated. Samples were first subjected to solution treatment at $470^{\circ}C$, followed by cryogenic treatment and aging treatment. The residual stress and mechanical properties of the samples were systematically characterized. Residual stress was measured with a cutting method using strain gauges attached on the surface of the samples; in addition, tensile strength and Vickers hardness tests were performed. The detailed microstructure of the samples was investigated by transmission electron microscopy. Results showed that samples with 85 % relief in residual stress and 8% increase in tensile strength were achieved after undergoing three cycles of cryogenic treatments; this is in contrast to the samples processed by conventional solution treatment and natural aging (T4). The major reasons for the smaller residual stress and relatively high tensile strength for the samples fabricated by cryogenic treatment are the formation of very small-sized precipitates and the relaxation of residual stress during the low temperature process in uphill quenching. In addition, samples subjected to three cycles of cryogenic treatment demonstrated much lower residual stress than, and similar tensile strength compared to, those samples subjected to one cycle of cryogenic treatment or artificial aging treatment.

A Study on Cementation Reaction Mechanism for Weathered Granite Soil and Microbial Mixtures (화강풍화토와 미생물 혼합물의 고결 반응 메카니즘)

  • Oh, Jongshin;Lee, Sungyeol;Kim, Jinyung;Kwon, Sungjin;Jung, Changsung;Lee, Jaesoo;Lee, Jeonghoon;Ko, Hwabin;Baek, Wonjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.103-110
    • /
    • 2019
  • The purpose of this study is to investigate the reaction mechanism of soil and bacteria solution by various mixing ratios. For this purpose, in order to understand the reaction mechanisms of microorganisms and weathered granite soil, the tests were carried out under various mixing ratios additives such as soil, bacteria solution, $Ca(OH)_2$ and fixture. The test results from this study are summarized as follows. Firstly, the reaction between the bacteria solution and fixture produced a precipitate called vaterite, a type of silicate and calcium carbonate. Secondly, as a result of SEM analysis, the resulting precipitates generated from the test results using the specimens with various mixing ratios except SW condition and the irregular spherical microscopic shapes were formed in the size of $150{\mu}m$ to $20{\mu}m$. In addition, it can be seen that the bacteria solution and the fixture reacted between the granules to form an adsorbent material layer on the surface, and the microorganisms had a biological solidifying effect when the pores are combined into hard particles. Finally, The XRD analysis of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCO_3$) vaterite, which affects soil strength formation, as well as silicate($SiO_2$).

The effect of organic matter on the removal of phosphorus through precipitation as struvite and calcium phosphate in synthetic dairy wastewater

  • Aleta, Prince;Parikh, Sanjai J.;Silchuk, Amy P.;Scow, Kate M.;Park, Minseung;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • This study investigated the effect of organic matter on the precipitation of struvite and calcium phosphate for phosphorus recovery from synthetic dairy wastewater. Batch precipitation experiments were performed to precipitate phosphorus from solutions containing $PO_4{^{3-}}$ and $NH_4{^+}$ by the addition of $Mg^{2+}$ and $Ca^{2+}$, separately, at varying pH, Mg/P and Ca/P molar ratios, and organic matter concentrations. Soluble total organic solids exhibited more inhibition to precipitation due to potential interaction with other dissolved ionic species involved in phosphorus precipitation. Xylan with low total acidity only exhibited significant inhibition at very high concentrations in synthetic wastewater (at up to 100 g/L). No significant inhibition was observed for Mg and Ca precipitation at relatively lower concentrations (at up to 1.2 g/L). MINTEQ simulations show that dissolved organic matter (DOM) as humic substances (HS) can cause significant inhibition even at relatively low concentrations of 0.165 g/L fulvic acid. However, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis suggested that xylan altered the crystal structure of both precipitates and had caused the formation of smaller sized struvite crystals with slightly rougher surfaces This could be due to xylan molecules adhering on the surface of the crystal potentially blocking active sites and limit further crystal growth. Smaller particle sizes will have negative practical impact because of poorer settleability.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.