• Title/Summary/Keyword: Formation of precipitates

Search Result 199, Processing Time 0.021 seconds

AFM Study on Surface Film Formation on a Graphite Negative Electrode in a $LiPF_6$-based Non-Aqueous Solution (AFM을 이용한 $LiPF_6$를 주성분으로 하는 비수용액중에서의 흑연 음극 표면에 형성되는 피막에 관한 연구)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1313-1318
    • /
    • 2006
  • The mechanism fur the surface film formation was studied by in situ Atomic Force Microscopy (AFM) observation of a highly oriented pyrolytic graphite (HOPG) basal plane surface during cyclic voltammetry at a slow scan-rate of 0.5 mV $s^{-1}$ in 1 moi $dm^{-3}$ (M) $LiPF_6$ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Decomposition of the electrolyte solution began at a potential around 2.15 V vs. $Li^+$/Li on step edges. In the potential range 0.95-0.8 V vs. $Li^+$/Li, flat areas (hill-like structures) and large swelling appeared on the surface. It is considered that these two features were formed by the intercalation of solvated lithium ions and their decomposition beneath the surface, respectively. At potentials more negative than 0.80 V vs. $Li^+$/Li, particle-like precipitates appeared on the basal plane surface. After the first cycle, the thickness of the precipitate layer was 30 nm. The precipitates were considered to be decomposition of the lithium salt ($LiPF_6$) and solvent molecules (EC and DEC), and to have an important role in suppressing further solvent decomposition on the basal plane.

  • PDF

Phase Distribution and Interface Chemistry by Solid State SiC/Ni Reaction

  • Lim, Chang-Sung;Shim, Kwang-Bo;Shin, Dong-Woo;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The phase distribution and interface chemistry by the solid-state reaction between SiC and nickel were studied at temperatures between $550 \;and\; 1250^{\circ}C$ for 0.5-100 h. The reaction with the formation of silicides and carbon was first observed above $650^{\circ}C$. At $750^{\circ}C$, as the reaction proceeded, the initially, formed $Ni_3Si_2$ layer was converted to $Ni_2$Si. The thin nickel film reacted completely with SiC after annealing at $950^{\circ}C$ for 2 h. The thermodynamically stable $Ni_2$Si is the only obsrved silicide in the reaction zone up to $1050^{\circ}C$. The formation of $Ni_2$Si layers with carbon precipitates alternated periodically with the carbon free layers. At temperatures between $950^{\circ}C$ and $1050^{\circ}C$, the typical layer sequences in the reaction zone is determined by quantitative microanalysis to be $SiC/Ni_2$$Si+C/Ni_2$$Si/Ni_2$$Si+C/…Ni_2$Si/Ni(Si)/Ni. The mechanism of the periodic band structure formation with the carbon precipitation behaviour was discussed in terms of reaction kinetics and thermodynamic considerations. The reaction kinetics is proposed to estimate the effective reaction constant from the parabolic growth of the reaction zone.

  • PDF

Supergene Alteration of High-Ca Limestone from the Pungchon Formation (풍촌층 고품위 석회석의 표성변질)

  • Oh Sung Jin;Kim Kyong Jin;Noh Jin Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.135-144
    • /
    • 2005
  • In the high-Ca limestone zone of the Pungchon Formation of the Lower Chosun Supergroup, cryptocrystalline alterations with reddish brown color occur as fissure-fillings or coatings, which was originated from the upper formation, i. e., the Hwajeol Formation. The precipitates result in degradation and contamination of the high-Ca limestone ore in grade and quality, showing characteristic occurrence and mineral composition typical of suggesting a supergene origin. Chalcedonic quartz, kaolinite, illite, goethite and hematite are constituting a characteristic authigenic mineral assemblage and, in places, smectite is less commonly included in the weathering product. In addition to these authigenic phases, some detrital minerals such as mica and orthoclase constituting relatively coarser grains are also rarely present in the supergene alterations. A rather complex clay facies consisting of kaolinite, illite and smectite in the alterations seems to correspond to the typical clay composition of the reported residual pedogenic soils by limestone weathering. The cryptocrystalline weathering product is partly altered to stilbite, a characteristic hydrothermal zeolite, in places, by the hydrothermal contact of late stage. The time of formation and infiltration of the supergene alterations seems to correspond to the stage just after the epithermal alteration of the Pungchon Limestone, i. e., an early Jurassic age. The supergene alteration, which may imply the stage of uplifting, weathering and erosion of the Chosun Supergroup, appears to have undergone at an oxygen-rich environment in descending water of meteoric origin by means of a chemical leaching and diffusion.

Design of New Parenteral Aqueous Formulations of Fluconazole by the Use of Modified Cyclodextrins (시클로덱스트린류를 이용한 새로운 플루코나졸 수성 주사제의 설계)

  • 이소윤;전인구
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.357-365
    • /
    • 2001
  • The purpose of this study is to investigate the influence of cyclodextrins (CDs) and different acids on the solubility of fluconazole, and o formulate its more concentrated parenteral aqueous solution. Solubility studies of fluconazole with 7-CD, 2-hydroxypropyl-$\beta$-CD (HPCD), sulfobutyl ether $\beta$-CD (SBCD) and dimethyl-$\beta$-CD(DMCD) were performed. The aqueous solubility of fluconazole was measured in different concentrations of different acids with or without addition of CDs. Solubility of fluconazole increased in the rank order of $\beta$-CD$^1$H-NMR studies confirmed the formation of an inclusion complex of fluconazole with HPCD. It was also shown by the NMR studies that the complex formed was a 1:1 complex. Among the different acids used, maleic acid and phosphoric acid increased solubility of fluconazole. The lower the pH of solution is, the more fluconazole dissolved, regardless of acids. Addition of HPCD (50 mM) to acid solutions increased the solubility about two times. New fluconazole injections at a dose of 10 mg/ml could be prepared in aqueous solutions containing 10% HPCD or 15% SBCD. These parenteral solutions did not form any precipitates at 4$^{\circ}C$ and was very stable at elevated temperatures. These results demonstrate that it is possible to develop a parenteral aqueous solution of fluconazole with a smaller injection volume using HPCD or SBCD.

  • PDF

Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr (용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구)

  • Oh, Sang-Sub;Hwang, Young-Ha;Kim, Do-Hyang;Hong, Chun-Pyo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF

Effect of Heat Treatment on Surface Wettability of Al-Si-Mg Alloy (열처리 조건에 따른 Al-Si-Mg계 합금의 표면 젖음성 영향)

  • Jang, Hosung;Choi, Yoojin;Lee, Seungwon;Jeon, Jongbae;Park, Sunghyuk;Shin, Sunmi
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.337-343
    • /
    • 2018
  • The present study investigated the effect of heat treatment process on the surface wettability of an Al-Si-Mg alloy. After solution-treated at $525^{\circ}C$ and aged at $160^{\circ}C$, the alloy showed high hardness due to the formation of precipitates. In addition, surface wettability was improved in such a way that the contact angle of distilled water droplet on the flat surface decreased to $37.6{\sim}42.1^{\circ}$ after the heat treatment. The surface energy predicted by Owens-Wendt equation also confirmed the increase of surface energy after the heat-treatment. However, when the surface roughness increased, the positive effect of the heat treatment on wettability diminished due to the geometrical factors of the rough surface.

Corrosion Protection Properties of Cobalt Salt for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloy

  • Thai, Thu Thuy;Trinh, Anh Truc;Pham, Gia Vu;Pham, Thi Thanh Tam;Xuan, Hoan Nguyen
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, the efficiency and the inhibition mechanisms of cobalt salts (cobalt nitrate and cobalt-exchange silica Co/Si) for the corrosion protection of AA2024 were investigated in a neutral aqueous solution by using the electrochemical impedance spectroscopy (EIS) and polarization curves. The experimental measurements suggest that cobalt cation plays a role as a cathodic inhibitor. The efficiency of cobalt cation was important at the concentration range from 0.001 to 0.01 M. The formation of precipitates of oxides/hydroxides of cobalt on the surface at low inhibitor concentration was confirmed by the Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDS) analysis. EIS measurements were also conducted for the AA2024 surface covered by water-based epoxy coating comprising Co/Si salt. The results obtained from exposure in the electrolyte demonstrated the improvement of the barrier and inhibition properties of the coating exposed in the electrolyte solution for a lengthy time. The SEM/EDS analysis in artificial scribes of the coating after salt spray testing revealed the release of cobalt cations in the coating defect to induce the barrier layer on the exposed AA2024 substrate.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

Physicochemical properties and autogenous healing performance of ternary blended binders composed of OPC-BFS-CSA clinker

  • H.N. Yoon;Joonho Seo;Naru Kim;H.M. Son;H.K. Lee
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • Autogenous healing of concrete can be helpful in structural maintenance by healing cracks using a healing material created by the precipitation of calcite and by the hydration of unhydrated binder around the cracks. Against this backdrop, this study investigated the physicochemical properties and autogenous healing performance of ternary blended binder composed of ordinary Portland cement (OPC), blast furnace slag (BFS), and calcium sulfoaluminate (CSA) clinker. Ternary blended binders with various contents of OPC-BFS-CSA clinker were prepared, and their physicochemical properties and autogenous healing performances were examined using various analytical techniques and visually observed using a microscope. The obtained results indicated that increase in the BFS content accompanied the increased the amount of unreacted BFS even after 28 days of curing and had a positive effect on the autogenous healing performance due to its latent hydration. However, replacing the CSA clinker did not increase the autogenous healing performance owing to an insufficient sulfate source for the formation of ettringite. The main precipitates around the cracks were calcite, C-S-H. Other hydration products such as portlandite, monosulfate, and ettringite, which were not found in the Raman and scanning electron microscope analyses.

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.