• 제목/요약/키워드: Formation of glutathione conjugates

검색결과 5건 처리시간 0.021초

Naphthazarin Derivative (V) : Formation of Glutathione Conjugate and Cytotoxic Activity of 2-or 6-Substituted 5,8-Dimethoxy-1,4-napthoquinones in the Presence of Glutathione-S-transferase, in Rat Liver S-9 Fraction and Mouse Liver Perfusate

  • Zheng, Xiang-Guo;Kang, Jong-Seong;Kim, Hwan-Mook;Jin, Guang-Zhu;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.22-25
    • /
    • 2000
  • Formation of glutathione (GSH) conjugates with 2- or 6-(1-hydroxymethyl)- and 2-(1-hydroxyethyl)-DMNQ derivatives (DMNQ, 5,8-dimethoxy-1,4-naphthoquone was carried out in phosphate buffer (pH 7.4), in the presence of glutathione-S-transferase (GST), in rat liver S-9 fraction and by perfusion, and the rates of conjugates formation were compared and correlated to cytotoxicity. The GSH conjugates of 6-(1-hydroxyalkyl)-DMNQ derivatives were formed faster than 2-(1-hydroxyalkyl)-DMNQ derivatives under all of the media, implying that steric hindrance was the cause of lowering the rate of conjugate formation of 2-substituted derivatives. For both isomers, addition of GST did not improve the reaction rate, compared with that in buffer, while the reaction in the S-9 fraction and the perfusate was accelerated to a great extent. The catalytic effect of the S-9 fraction and the perfusate contain an effective system relaxing the steric hindrance of 2-(1-hydroxyalkyl)-DMNQ derivatives. Furthermore, a good correlation between the formation of the GSH conjugates and the cytotoxic activity of both naphthazarin isomers suggests that the steric hindrance is a cause of lowering the cytotoxicity of 2-isomers.

  • PDF

Glutathione Conjugates of 2- or 6-Substituted 5,8-Dimethoxy-1,4-Naphthoquinone Derivatives : Formation and Structure

  • Zheng, Xiang-Guo;Kang, Jong-Seong;Kim, Yong;You, Young-Jae;Jin, Guang-Zhu;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • 제22권4호
    • /
    • pp.384-390
    • /
    • 1999
  • Thirty-four glutathione conjugates of 5,8-dimethoxy-1,4-naphthoquinones (DMNQ) were synthesized and their structure was determined. The yield of GSH conjugate was dependent on size of alkyl group; the longer the size of alkyl group was, the lower was the yield. It was also found that the length of alkyl side chain influenced the chemical shift of quinonoid protons; the quinonoid protons of 2-glutathionyl DMNQ derivatives with R=H to propyl, 6.51-6.59 ppm vs. other ones with R=butyl to heptyl, 6.64-6.68 ppm. this was explained to be due to a folding effect of longer alkyl group. Glutathione (GSH) reacted with DMNQ derivative first to form a 1,4-adduct (2- or 3-glutathionyl-1,4-dihydroxy-5,8-dimethoxynaphthalenes) and then the adduct was autooxidized to 2- or 3-glutathionyl-DMNQ derivatives. Moreover, GSH reduced DMNQ derivatives to their hydrogenated products. It was suggested that such an organic reaction might play an important role for a study of metabolism or toxicity of DMNQ derivative sin the living cells.

  • PDF

Hepatotoxic Effect of 1-Bromopropane and Its Conjugation with Glutathione in Male ICR Mice

  • Lee Sang Kyu;Jo Sang Wook;Jeon Tae Won;Jun In Hye;Jin Chun Hua;Kim Ghee Hwan;Lee Dong Ju;Kim Tae-Oh;Lee Eung-Seok;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1177-1182
    • /
    • 2005
  • The hepatotoxic effects of 1-bromopropane (1-BP) and its conjugation with glutathione were investigated in male ICR mice. A single dose (1000 mg/kg, po) of 1-BP in corn oil to mice significantly increased serum activities of alanine aminotransferase and aspartate aminotransferase. Glutathione (GSH) content was dose-dependently reduced in liver homogenates 12 h after 1-BP treatment. In addition, 1-BP treatment dose-dependently increased levels of S-pro-pyl GSH conjugate at 12 h after treatment, as measured by liquid chromatography-electro-spray ionization tandem mass spectrometry. The GSH conjugate was maximally increased in liver at 6 h after 1-BP treatment (1000 mg/kg), with a parallel depletion of hepatic GSH content. Finally, 1-BP induced the production of malondialdehyde in liver. The present results suggest that 1-BP might cause hepatotoxicity, including lipid peroxidation via the depletion of GSH, due to the formation of GSH conjugates in male ICR mice.

Role of Glutathione Conjugation in 1-Bromobutane-induced Immunotoxicity in Mice

  • Lee, Sang-Kyu;Lee, Dong-Ju;Jeon, Tae-Won;Ko, Gyu-Sub;Yoo, Se-Hyun;Ha, Hyun-Woo;Kang, Mi-Jeong;Kang, Won-Ku;Kim, Sang-Kyum;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • 제26권2호
    • /
    • pp.101-108
    • /
    • 2010
  • Halogenated organic compounds, such as 1-bromobutane (1-BB), have been used as cleaning agents, agents for chemical syntheses or extraction solvents in workplace. In the present study, immunotoxic effects of 1-BB and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. Animals were treated orally with 1-BB at 375, 750 and 1500 mg/kg in corn oil once for dose response or treated orally with 1-BB at 1500 mg/kg for 6, 12, 24 and 48 hr for time course. S-Butyl GSH was identified in spleen by liquid chromatography-electrospray ionization tandem mass spectrometry. Splenic GSH levels were significantly reduced by single treatment with 1-BB. S-Butyl GSH conjugates were detected in spleen from 6 hr after treatment. Oral 1-BB significantly suppressed the antibody response to a T-dependent antigen and the production of splenic intracellular interlukin-2 in response to Con A. Our present results suggest that 1-BB could cause immunotoxicity as well as reduction of splenic GSH content, due to the formation of GSH conjugates in mice. The present results would be useful to understand molecular toxic mechanism of low molecular weight haloalkanes and to develop biological markers for exposure to haloalkanes.

Identification of Glutathione Conjugates of 2, 3-Dibromopropene in Male ICR Mice

  • Lee Sang Kyu;Baik Seo Yeon;Jeon Tae Won;Jun In Hye;Kim Ghee Hwan;Jin Chun Hua;Lee Dong Ju;Kim Jun Kyou;Yum Young Na;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • 제29권2호
    • /
    • pp.172-177
    • /
    • 2006
  • Hepatotoxic potential of 2, 3-dibromopropene (2, 3-DBPE) and its conjugation with glutathione (GSH) were investigated in male ICR mice. Treatment of mice with 20, 50, and 100 mg/kg of 2, 3-DBPE for 24 h caused elevation of serum alanine aminotransferase and aspartate aminotransferase activities. The hepatic content of GSH was not changed by 2, 3-DBPE. Meanwhile, the GSH content was slightly reduced when mice were treated with 2, 3-DBPE for 6 h and significantly increased 12 h after the treatment. Subsequently, a possible formation of GSH conjugate of 2, 3-DBPE was investigated in vivo. After the animals were treated orally with 20, 50, and 100 mg/kg of 2, 3-DBPE, the animals were subjected to necropsy 6, 12, and 24 h later. A conjugate of S-2-bromopropenyl GSH was identified in liver and serum treated with 100 mg/kg of 2, 3-DBPE by using liquid chromatography-electrospray ionization tandem mass spectrometry. The protonated molecular ions $[M+H]^+$ of S-2-bromopropenyl GSH were observed at m/z 425.9 and 428.1 in the positive ESI spectrum with a retention time of 6.35 and 6.39 min, respectively. In a time-course study in livers following an oral treatment of mice with 100 mg/kg of 2, 3-DBPE for 6, 12, and 24 h, the 2, 3-DBPE GSH conjugate was detected maximally 6 h after the treatment. The present results suggested that 2, 3-DBPE-induced hepatotoxicity might be related with the production of its GSH conjugate.