• Title/Summary/Keyword: Formation Kinetics

Search Result 432, Processing Time 0.025 seconds

Effect of Ethidium on the Formation of Poly(dA)·[poly(dt)]₂Triplex: A Kinetic Study by Optical Spectroscopic Methods

  • 이길준;현경미;조태섭;Kim, Seog K.;정맹준;한상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.444-449
    • /
    • 1998
  • The kinetics of the formation of triplex $poly(dA){\cdot}[poly(dT)]_2$ from poly(dA)·poly(dT) and poly(dT) is examined by various optical spectroscopic methods, including absorption, circular and linear dichroism (LD) spectroscopy. In the pseudo first order condition, where the poly(dT) concentration is kept lower than that of duplex, the association of the poly(dT) is enhanced by the presence of ethidium; the rate constant is proportional to the amount of ethidium in the mixture. When the concentration of the duplex and the single strand is the same, a spectral change is explained by double exponential curves, indicating that at least two steps are involved, the fast association and slow rearrangement steps. In contrast to the pseudo first order kinetics, the association step in an equimolar condition is not affected by the presence of ethidium. In the rearrangement step, the magnitude of LD decreases with an increase in ethidium concentration, suggesting that the bending of polynucleotide around the intercalation site occurs in the rearrangement step.

Phase Distribution and Interface Chemistry by Solid State SiC/Ni Reaction

  • Lim, Chang-Sung;Shim, Kwang-Bo;Shin, Dong-Woo;Auh, Keun-Ho
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • The phase distribution and interface chemistry by the solid-state reaction between SiC and nickel were studied at temperatures between $550 \;and\; 1250^{\circ}C$ for 0.5-100 h. The reaction with the formation of silicides and carbon was first observed above $650^{\circ}C$. At $750^{\circ}C$, as the reaction proceeded, the initially, formed $Ni_3Si_2$ layer was converted to $Ni_2$Si. The thin nickel film reacted completely with SiC after annealing at $950^{\circ}C$ for 2 h. The thermodynamically stable $Ni_2$Si is the only obsrved silicide in the reaction zone up to $1050^{\circ}C$. The formation of $Ni_2$Si layers with carbon precipitates alternated periodically with the carbon free layers. At temperatures between $950^{\circ}C$ and $1050^{\circ}C$, the typical layer sequences in the reaction zone is determined by quantitative microanalysis to be $SiC/Ni_2$$Si+C/Ni_2$$Si/Ni_2$$Si+C/…Ni_2$Si/Ni(Si)/Ni. The mechanism of the periodic band structure formation with the carbon precipitation behaviour was discussed in terms of reaction kinetics and thermodynamic considerations. The reaction kinetics is proposed to estimate the effective reaction constant from the parabolic growth of the reaction zone.

  • PDF

Kinetics and Statistics of Structural Changes in Polyacrylonitrile (폴리아크릴로니트릴의 構造變化에 있어서의 動力學的 및 統計學的 硏究)

  • Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 1966
  • It is well known that the coloration and structural changes in thermal treatment of polyacrylonitrile are due to the formation of partly hydrogenated naphthylidine-type ring involving the pendant nitrile groups. Any quantitative study of the reaction, in the sense of kinetics and/or statistics, however, has never been reported. This paper presents that, at first, the disappearance of the nitrile groups follows the first order kinetics, which indicates clearly that nitrile groups do not disappear by a long chain reaction-the kinetic chain length is very short. This observation rules out the long intramolecular and intermolecular propagation chain through which most of the nitrile groups disappear. From the evidence that a similar reaction occurs in propylene carbonate solutions without gel formation, one may conclude that the coloration and structural changes are not necessarily intermolecular reaction. Secondly, a finite amount of nitrile groups remains unreacted at the extrem of reaction-not contributed to the formation of naphthylidine-type ring. The concentration of this unreacted nitrile groups is 19∼22% which is good agreement with the statistically calculated value of 19.2%.

  • PDF

Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition (하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구)

  • Trung Tin Huynh;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

Complex Formation of Adenosine 3',5'-Cyclic Monophosphate with β-Cyclodextrin: Kinetics and Mechanism by Ultrasonic Relaxation

  • Bae, Jong-Rim;Kim, Jeong-Koo;Lee, Chang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.442-446
    • /
    • 2010
  • Adenosine 3',5'-cyclic monophosphate (cAMP) is a second messenger responsible for a multitude of cellular responses. In this study, we utilized $\beta$-cyclodextrin ($\beta$-CD) as an artificial receptor with a hydrophobic cavity to elucidate the inclusion kinetics of cAMP in a hydrophobic environment using the ultrasonic relaxation method. The results revealed that the interaction of cAMP with $\beta$-CD followed a single relaxation curve as a result of host-guest interactions. The inclusion of cAMP into the $\beta$-CD cavity was found to be a diffusion-controlled reaction. The dissociation of cAMP from the $\beta$-CD cavity was slower than that of adenosine 5'-monophosphate (AMP). The syn and anti glycosyl conformations of adenine nucleotides are considered to play an important role in formation of the inclusion complex. Taken together, our findings indicate that hydrophobic interactions are involved in the inclusion complex formation of cAMP with $\beta$-CD and provide insight into the interactions of cAMP with cAMP-binding proteins.

Quantitative analysis of Precipitate Using Transformation in Nb Added Low Carbon Steels (Nb 첨가 저합금강의 상변태를 이용한 석출물 정량분석)

  • Kang, H.C.;Lee, S.H.;Kim, N.S.;Lee, K.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2003
  • In Nb, V and Ti added steels, carbo-nitrides are formed due to their strong interaction with C and N. The formation of carbo-nitrides has an important role to control the microstructure as well as mechanical properties by grain size refinement and precipitation hardening. However, the quantitative analysis of distribution of precipitates and the effect of precipitates on the phase transformation and mechanical properties are still far from satisfactory. In this study, the quantitative analysis of precipitates in austenite was investigated using the fact that the formation of precipitates in Nb, V and Ti added steels accelerates austenite/ferrite transformation. The formation of precipitates was controlled by adjusting holding temperature and time in austenite region, transformed Volume fractions were measured by dilatometer during slow cooling, Iso-precipitation kinetics were determined by comparing 5% and 50% volumes transformed at various conditions respectively. The result was compared with the calculated.

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner (석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

In vitro Metabolism of Pentoxifylline Metabolite M-l in Human Liver Microsomes (인체 간 microsome에서 pentoxifylline 대사체 M-1의 시험관내 대사)

  • 신혜순
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.834-842
    • /
    • 1999
  • The metabolism and pharmacokinetics of M-l, which is metabolite of pentoxifylline, have been studied in human liver microsomes. Biphasic kinetics was observed from the Eadie-Hofstee plot for the formation of both metabolites of M-l. For the kinetics of pentoxifylline, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 1,648 and 5,622 nmol/min/mg protein, and the estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.180 and 4.829 mM, respectively. For M-3, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 0.062 and 0.491 nmol/min/mg protein, and estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.025 and 1.216 mM. The formations of pentoxifylline and M-3 from M-1 were indentified by using several selective inhibitors of cytochrome P450 isoformes at 0.05-5 mM concentration of M-1 in human liver microsomes. For the analysis of low (0.05 mM) concentration of M-1, where the affinity was expected as low, indicated that CYPlA2 and CYP3A4 were major P450 isoforms responsible for pentoxifylline and M-3 formation. CYP3A4 and CYP2A6 appeared to be P450 isoforms responsible for M-3 formation at high (5 mM) concentration of M-1.

  • PDF