• Title/Summary/Keyword: Formation Control

Search Result 3,796, Processing Time 0.03 seconds

Development of a Preliminary Formation-Flying Testbed for Satellite Relative Navigation and Control

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.26.3-26.3
    • /
    • 2008
  • This research develops a GPS-based formation-flying testbed (FFTB) for formation navigation and control. The FFTB is a simulator in which spacecraft simulation and modeling software and loop test capabilities are integrated for test and evaluation of spacecraft navigation and formation control technologies. The FFTB is composed of a GPS measurement simulation computer, flight computer, environmental computer for providing true environment data and 3D visualization computer. The testbed can be simulated with one to two spacecraft, thus enabling a variety of navigation and control algorithms to be evaluated. In a formation flying simulation, GPS measurement are generated by a GPS measurement simulator to produce pseudorange, carrier phase measurements, which are collected and exchanged by the flight processors and subsequently processed in a navigation filter to generate relative and/or absolute state estimates. These state estimates are the fed into control algorithm, which are used to generate maneuvers required to maintain the formation. In this manner, the flight processor also serves as a test platform for candidate formation control algorithm. Such maneuvers are fed back through the controller and applied to the modeled truth trajectories to close simulation loop. Currently, The FFTB has a closed-loop capability of simulating a satellite navigation solution using software based GPS measurement, we move forward to improve using SPIRENT GPS RF signal simulator and space-based GPS receiver

  • PDF

Development of Integrated Orbit and Attitude Software-in-the-loop Simulator for Satellite Formation Flying

  • Park, Han-Earl;Park, Sang-Young;Park, Chandeok;Kim, Sung-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2013
  • An integrated orbit and attitude control algorithm for satellite formation flying was developed, and an integrated orbit and attitude software-in-the-loop (SIL) simulator was also developed to test and verify the integrated control algorithm. The integrated algorithm includes state-dependent Riccati equation (SDRE) control algorithm and PD feedback control algorithm as orbit and attitude controller respectively and configures the two algorithms with an integrating effect. The integrated SIL simulator largely comprises an orbit SIL simulator for orbit determination and control, and attitude SIL simulator for attitude determination and control. The two SIL simulators were designed considering the performance and characteristics of related hardware-in-the-loop (HIL) simulators and were combined into the integrated SIL simulator. To verify the developed integrated SIL simulator with the integrated control algorithm, an orbit simulation and integrated orbit and attitude simulation were performed for a formation reconfiguration scenario using the orbit SIL simulator and the integrated SIL simulator, respectively. Then, the two simulation results were compared and analyzed with each other. As a result, the user satellite in both simulations achieved successful formation reconfiguration, and the results of the integrated simulation were closer to those of actual satellite than the orbit simulation. The integrated orbit and attitude control algorithm verified in this study enables us to perform more realistic orbit control for satellite formation flying. In addition, the integrated orbit and attitude SIL simulator is able to provide the environment of easy test and verification not only for the existing diverse orbit or attitude control algorithms but also for integrated orbit and attitude control algorithms.

Formation of Mobile Robots with Inaccurate Sensor Information

  • Kim, Gunhee;Lee, Doo-Yong;Lee, Kyungno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.203-209
    • /
    • 2001
  • This paper develops a control method for some generic formation tasks of multiple mobile robots with inaccurate sensor information. Inaccurate sensor information means that all the robots have only local sensors that cannot accurately measure absolute distances and directions of objects. That is, all the sensors have limitation on the range, and uncertainty in the values. Therefore, more robust and reliable control logic is proposed and implemented. The logic is developed considering generic situations and increasing the number of robots participating in the formation. Petri nets are used for modeling and design of the control logic, which can visualize the control models and make it easy to check the states of each robot. Physically homogeneous mobile robots are designed and built to evaluate the developed logic. Each robot is equipped with eighteen infrared sensors and a UHF transceiver module. The experiment results are analyzed quantitatively by using the data of the relative distances and angles between the robots. And the trajectories of the robots during the formation are also evaluated. The developed control approach is demonstrated with experiments to be successful and efficient for the formation of autonomous mobile robots.

  • PDF

군집 지능을 이용한 분산 제어 기반 대형 형성 알고리즘 (Multi-UAV Formation Algorithm Based on Distributed Control Using Swarm Intelligence)

  • 김문정;김정훈;김효중;유창경
    • 한국항공우주학회지
    • /
    • 제50권8호
    • /
    • pp.523-530
    • /
    • 2022
  • 다양한 임무에서 활용 가능한 무인기 다개체 시스템은 단일 무인기보다 복잡하므로 효율적인 대형 제어방식이 요구된다. 특히 광역 탐색임무에 있어 통신량 및 연산량 부담이 적으며, 무인기간 자율적인 대형 형성이 가능한 분산 제어형의 유동적인 대형 형성이 필요하다. 본 연구는 스캔 면적의 확장 및 탐색 성능향상을 위해 Swarm 대형과 뱅크 정렬 대형, 대형 전체 운동을 고려한 대형 형성 알고리즘을 제안한다. 본 알고리즘은 상대거리에 대해서 2차 진동 특성을 가지며 parameter tuning을 통해 알고리즘을 설계할 수 있다. 또한 통상적인 무인기 시스템에 적합하도록 제어명령을 변환하였고, 시뮬레이션을 통해 알고리즘의 대형 형성 및 운동에 대한 성능을 입증하였다.

유니사이클 로봇을 위한 지역최소점 탈출을 갖춘 포메이션 알고리즘 (Formation Algorithm with Local Minimum Escape for Unicycle Robots)

  • 정하민;김동헌
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.349-356
    • /
    • 2013
  • This paper presents formation control based on potential functions for unicycle robots. The unicycle robots move to formation position which is made from a reference point and neighboring robots. In the framework, a local minimum case occurred by combination of potential repulsed from neighboring robots and potential attracted from a formation line is presented, in which the robot escapes from a local minimum using a virtual escape point after recognizing trapped situation. As well, in the paper, potential functions are designed to keep the same distance between neighboring robots on a formation line, i.e. the relative distance between neighboring robots on a formation line is controlled by a potential function parameter. The simulation results show that the proposed approach can effectively construct straight line, V, and polygon formation for multiple robots.

군집비행을 위한 상대 거리정보 기반의 편대 유도기법 설계 (A Formation Guidance Law Design Based on Relative-Range Information for Swam Flight)

  • 김성환;조성범;박상혁;김도완;유창경
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.87-93
    • /
    • 2012
  • In this paper, a formation guidance method for UAVs (Unmanned Aerial Vehicles) to simulate the formation flight of birds proposed. The proposed method solves all issues of approaching for formation, formation keeping, and scarce chance to be collided with each UAV during formation process. Also, we design the feedforward controller to compensate the change of speed and heading for maneuvering of the leader UAV and the feedback controller to consider the response lag of the system. The stability and performance of the proposed controller is verified via numerical simulations of the full 6-Dof model of UAV.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어 (A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity)

  • 백승대;김민승;우주현
    • 대한조선학회논문집
    • /
    • 제61권3호
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

추종 로봇의 측정값들을 이용한 다중 이동 로봇의 선도-추종 접근법 기반 군집 제어 (Leader-Follower Based Formation Control of Multiple Mobile Robots Using the Measurements of the Follower Robot)

  • 박봉석
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.385-389
    • /
    • 2013
  • This paper proposes the leader-follower based formation control method for multiple mobile robots. The controller is designed using the measurements of the follower robot such as the relative distance and angle between the leader and the follower. This means that the follower robot does not require the information of the leader robot while keeping the desired formation. Therefore, the proposed control method can reduce the communication loss and the cost for hardware. From Lyapunov stability theory, it is shown that all error signals in the closed-loop system are uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the proposed control system.