• Title/Summary/Keyword: Formation/dissociation

Search Result 161, Processing Time 0.026 seconds

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

The Solvent Effects on the Formation of Polyynes by Laser Ablation

  • Park, Young-Eun;Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2439-2442
    • /
    • 2012
  • In order to explore the effects of the solvent on the formation rate of polyynes, we investigated the absorption spectra of polyynes obtained by laser ablation of a graphite target in different solvents at 1064 nm. Polyynes so produced were confirmed by the Raman band around $2200cm^{-1}$ which corresponds to the carbon triple bonds. The production of polyynes by laser ablation turned out to be significantly affected by the ratio of the hydrogen and carbon atoms in the solvent molecule. No clear correlations were observed in the formation of polyynes for other properties of the solvent such bond dissociation energy, thermal conductivity, and total mass of hydrogen atoms per volume of solvent.

The Kinetics of Complexation of Nickel(II) and Cobalt(II) Mandelates in Aqueous Solution

  • Choi, Ki-Young;Yun, Sock-Sung;Kim, Mal-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.629-632
    • /
    • 1991
  • The rate constants for the formation and dissociation of nickel(II) and cobalt(II) complexes with mandelate have been determined by the pressure-jump relaxation study. The forward and reverse rate constants for the mandelate complex formation reactions were obtained to be $k_f=3.60{\times}10^4\;M^{-1}s^{-1}$ and $k_r=1.73{\times}10^2\;s^{-1}$ for the nickel(II), and $k_f=1.75{\times}10^5\;M^{-1}s{-1}$ and $2.33{\times}10^3\;s^{-1}$ for the cobalt(II) in aqueous solution of zero ionic strength ($(\mu{\to}0)\;at\;25^{\circ}C$. The results were interpreted by the use of the multistep complex formation mechanism. The rate constants evaluated for each individual steps in the multistep mechanism draw a conclusion that the rate of the reaction would be controlled by the chelate ring closure step in concert with the solvent exchange step in the nickel(II) complexation, while solely by the chelate ring closure step for the cobalt(II) complex.

PATIAL DISTRIBUTION OF STAR FORMATION ACTIVITY ON NGC 253 BY FIR AND RADIO EMISSION LINES

  • Takahashi, H.;Matsuo, H.;Nakanishi, K.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.261-262
    • /
    • 2012
  • The aim of this research is to reveal the spatial distribution of the star formation activity of nearby galaxies by comparing CO molecular emission lines with the large area observation in far-infrared (FIR) lines. We report the imaging observations of NGC 253 by FIR forbidden lines via FIS-FTS and CO molecular lines from low to high excitation levels with ASTE, which are good tracers of star forming regions or photo-dissociation regions, especially spiral galaxies, in order to derive the information of the physical conditions of the ambient interstellar radiation fields. The combination of spatially resolved FIR and sub-mm data leads to the star formation efficiency within galaxy. The ratio between the FIR luminosity and molecular gas mass, $L_{FIR}/M_{H_2}$, is expected to be proportional to the number of stars formed in the galaxy per unit molecular gas mass and time. Moreover the FIR line ux shows current star formation activity directly. Furthermore these can be systematic and statistical data for star formation history and evolution of spiral galaxies.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production (가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2014
  • In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.

Optical Anisotropic Properties of Merocyanine Dye J-aggregates LB films by Molecular Interfacial Control (분자계면제어에 의한 메로시아닌 색소 J-회합체 LB막의 광학적 이방성 특성)

  • Shin, Hoon-Kyu;Park, Hyun-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.352-353
    • /
    • 2007
  • The spectrum for $0_{\circ}$, $90_{\circ}$-polarized light coincides with the spectrum for non-polarized light and also with the spectrum was observed in the LB film deposited using a fresh solution. And, the formation and dissociation of J-aggregates, anisotropic behavior was no longer observed in the heat treated merocyanine dyes LB films. But, in the optical absorption spectra of same LB films by UV irradiation at room temperature, their were observed only dissociation of J-aggregates, that is decrease of absorbance peak without change spectral shape. On the other hand, in the case of optical absorption spectra of the LB films by the heat treatment at $70^{\circ}C$ in the air, both of the shifted absorption bands decay and a monomer absorption peak of about 530 nm appears instead.

  • PDF

MODEL CALCULATIONS OF THE UV - EXCITED MOLECULAR HYDROGEN IN INTERSTELLAR CLOUDS

  • Lee, Dae-Hee;Pak, Soo-Jong;Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.7-10
    • /
    • 2005
  • We have calculated 2448 interstellar cloud models to investigate the formation and destruction of high rotational level $H_2$ according to the combinations of five physical conditions: the input UV intensity, the $H_2$ column density, cloud temperature, total density, and the $H_2$ formation rate efficiency. The models include the populations of all the accessible states of $H_2$ with the rotational quantum number J < 16 as a function of depth through the model clouds, and assume that the abundance of $H_2$ is in a steady state governed primarily by the rate of formation on the grain surfaces and the rates of destruction by spontaneous fluorescent dissociation following absorption in the Lyman and Werner band systems. The high rotational levels J = 4 and J = 5 are both populated by direct formation into these levels of newly created molecules, and by pumping from J = 0 and J = 1, respectively The model results show that the high rotational level ratio N(4)/N(0) is proportional to the incident UV intensity, and is inversely proportional to the $H_2$ molecular fraction, as predicted in theory.

Infrared Multiphoton Dissociation of $CHCl_2F$: Reaction Mechanisms and Product Ratio Dependence on Pressure and Laser Pulse Energy

  • Song, Nam-Woong;Lee, Won-Chul;Kim, Hyong-Ha
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • Infrared multiphoton dissociation of $CHCl_2F$ was studied using $CO_2$ laser excitation. Three products, $C_2Cl_2F_2$, $C_2ClF_3$, and $C_2HClF_2$, were identified by the analysis of the gas mixture from the photoreaction of $CHCl_2F$. The dependence of the reaction probability on added Ar gas pressure and excitation laser pulse energy was investigated. At low pressure (< 10 torr), the reaction probability increased as Ar pressure increased due to the rotational hole-filling effect, while it diminished with the increase of Ar pressure at high pressure (> > 20 torr) due to the collisional deactivation. The ratio of two products $(C_2ClF_3/C_2Cl_2F_2)$ decreased at low pressure (< 10 torr) and increased at high pressure (> 20 torr) with the increase of Ar pressure. The log-log plot of the reaction probability vs. laser pulse energy (${\\phi}$) was found to have a linear relationship, and its slope decreased as the added Ar pressure was increased. The reaction mechanisms for product formation have been suggested and validated by experimental evidences and considering the energetics. Fluorine-chlorine exchange reaction in the intermediate complex has been suggested to explain the formation of $C_2ClF_3$.

  • PDF

Geotechnical properties of gas hydrate bearing sediments (가스 하이드레이트 부존 퇴적토의 지반공학적 물성)

  • Kim, Hak-Sung;Cho, Gye-Chun;Lee, Joo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF