• Title/Summary/Keyword: Formaldehyde(HCHO)

Search Result 124, Processing Time 0.018 seconds

A Study on Changes in Indoor Air Pollution by Educational Activities -Centering on Newly-Established Elementary Schools- (교육활동에 따른 실내오염도 변화에 관한 연구 -신설 초등학교를 중심으로-)

  • Jeon, Seok-Jin
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.2
    • /
    • pp.66-90
    • /
    • 2007
  • The purpose of this study is to measure and analyze primary causes of indoor air pollution, including carbon dioxide, minute dust, and total volatile organic compounds, for each room before the beginning of a class through the time of discharge after the end of the class in general classrooms, computer rooms, and science rooms of three newly-established schools that opened in 2006, examine properties of indoor air environment in each room by educational activities at school, and determine effective management schemes; the results of this study can be summarized as follows: 1) As for implications for each item found in the mean for each place, since minute dust (PM10) was more likely to occur in time slots full of students' activities, such as a traveling class and a recess, than in the middle of a class and could be expected fully, it is necessary to make a scheme for cleaning in order to reduce minute dust within a room, for example, by usually using a vacuum cleaner indoors. 2) While carbon dioxide was expected to vary with the differences in the amount of breath between higher-graders and lower-graders in a general classroom but showed insignificant difference by grades, showing differences in pollution by four times at a maximum according to the opening of a window as expected, it is necessary to implement artificial or natural ventilation and take a positive measure, for example, by presenting a concrete ventilation scheme, in order to improve indoor air pollution at a room practice. 3) Total volatile organic compounds were found to exceed the standard by more than twice in general classrooms, science rooms, and computer rooms of the schools because of building materials, furnitures including desks and chairs, panels and boards for environment beautification, and items which could be detected even from students' clothes; while a field directly-reading tool was used, obtaining high reliability for the results, it is necessary to apply an analytical method based on process test separately for actual correct measurement if a significantly great amount of total volatile organic compounds appear as compared with other schools due to measuring expenses and consecutive measurements. 4) Since formaldehyde (HCHO) was generally found to exceed the standard in general classrooms, science rooms, and computer rooms, it is necessary to establish and operate a ventilator during a class in a computer room which requires airtightness and a science room in which an organic compound should be used for a class.

  • PDF

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

Investigation of conservation state on the waxed volumes of annals of the Joseon Dynasty (조선왕조실록 밀납본의 보존상태 조사)

  • Jeong, So-Young;Lee, Hye-Yun;Chung, Yong-Jae;Hong, Jung-Ki;Eom, Doo-Sung
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.119-132
    • /
    • 2004
  • Annals of the Joseon Dynasty is the authentic record of the historical facts and events taken place throughout the entire period of 472 years(25 generations, 1392~1863)described in a chronological order. The tremendous volume of the records contains the factual events taken place in almost all the fields of the Joseon Dynasty ranging from politics, economy to history of the dynasty. Not only because of its affluent contents but also with the precision of its records, it was designated as the National Treasure No. 151 in1973 by the Korean government and also registered as the Memory of the World by UNESCO in October 1997.This study is to report a exhaustive investigation results on the conservation state of annals of the Joseon Dynasty, especially Mt. Jeongjoksan edition, under the storage of the Kyujanggak in order to obtain the current condition, and thereby to estimate the any deterioration of the waxed volumes in the future. According to results of the investigation, we are going to verify damage causes of annals of the Joseon Dynasty, and to consider scientific conservation methods for the permanent preservation of invaluable cultural heritage. The major problem with the preservation of annals has arisen particularly from the deterioration of the waxed volumes of the Mt. Jeongjoksan edition. In order to provide for the counter measures for this problem, we have conducted twice investigations(first :1998~1999, second : 2003) to the internal and external conditions of waxed volumes(Annals of King Taejo~Annals of King Myeongjong).The result of the investigation has indicated that the paper quality of the some of the waxed volumes (Annals of King Taejong~Annals of King Sejong) is cracked and folded and the pages are imbedded to each other due to the hardened or congealed wax on the paper. Some of the pages are even getting moldy. And in order to detect as to whether“ there has been any deterioration progressed to the waxed books in the modern storage facility of the Kyujanggak equipped with constant temperature and humidity condition, the first investigation(1998~1999) and the second investigation(2003) have recorded the values of acidity, whiteness and moisture rate of the waxed paper, reporting an observation that there has been no difference on the measuring items. This indicates that no virtual deterioration has been progressed so far to the waxed volumes preserved in the Kyujanggak. Also, except for the causes of deterioration to the paper by insects and microorganisms, the major cause for the paper damage seems to the change of moisture of the paper caused from the alteration of the temperature and humidity of the storage environment. With this understanding in mind, we have conducted an environmental investigation on the three selected points of the storage in the aspects of the temperature, humidity, air current, $CO_2$,HCHO, and $SO_2$.It has been observed that the temperature stood at $16.9^{\circ}C~20.2^{\circ}C$ and the humidity was stable between 53%~56% during the period of the investigation. The concentration of the carbon monoxide and carbon dioxide of the storage were very similar to those in the air. These data lead to presume that there is no problem in the aspect of carbon oxidization. But the concentration of sulfur dioxide, hydrogen sulfide and formaldehyde of the storage were detected a little higher than those of standard. Therefore, we consider that it is necessary to ventilate the internal air of the store room by means of operating air purification devices.

  • PDF