• Title/Summary/Keyword: Formal Safety Assessment

Search Result 44, Processing Time 0.018 seconds

Development of Safety Management Information System for Gas Industries Using Database (데이터베이스를 이용한 가스산업시설의 안전관리정보시스템 구축)

  • Um Sung-In;Kim Sung-Bin;Kim Yun-Hwa;Baek Jong-Bae;Kim In-Won;Ko Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.48-54
    • /
    • 1998
  • In this study a computerized prototype system was developed with Safety Management Information System(SMIS version 1.0) as a main system and database as subsystems to handle information. Safety management information consists of management aspects and technical elements, but SMIS consists of 4 modules of technical elements to interrelate safety technologies closely. SMIS enables gas industries to manage process safety information effectively and to evaluate hazards. The results from SMIS can be used to the operation manual and the emergency plan. Data base consists of 3 modules of accident data, material data, and equipment data to support SMIS. Also, the case study results proved the usefulness of SMIS for searching and accumulating process safety data. Especially, MIS which has the database suggests a formal structure for scattered raw safety data in gas industries and brings reduction of man power and time.

  • PDF

A Study on the Risk Control Measures of Ship′s Collision (선박충돌사고 위험성 제어방안에 관한 연구)

  • 양원재;고재용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.41-48
    • /
    • 2004
  • Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, the analysis on ship's collision causes are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that ‘ship's collision' is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to propose risk control measures of ship's collision. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision. FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the causes of ship's collision are performed using FSM. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and reduce marine accidents.

Estimation of Environmental Costs Based on Size of Oil Tanker Involved in Accident using Neural Network (신경망을 이용한 유조선 기름 유출사고에 따른 환경비용 추정에 관한 연구)

  • Shin, Sung-Chul;Bae, Jeong-Hoon;Kim, Hyun-Soo;Kim, Seong-Hoon;Kim, Soo-Young;Lee, Jong-Kap
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.60-63
    • /
    • 2012
  • The accident risks in the marine environment are increasing because of the tendency to build faster and larger ships. To secure ship safety, risk-based ship design (RBSD) was recently suggested based on a formal safety assessment (FSA). In the process of RBSD, a ship designer decides which risk reduction option is most cost-effective in the design stage using a cost-benefit analysis (CBA). There are three dimensions of risk in this CBA: fatality, environment, and asset. In this paper, we present an approach to estimate the environmental costs based on the size of an oil tanker involved in an accident using a neural network. An appropriate neural network model is suggested for the estimation,and the neural network is trained using IOPCF data. Finally,the learned neural network is compared with the cost regression equation by IMO MEPC 62/WP.13 (2011).

Quantitative risk analysis of industial incidents occurring in trap boats (통발어선에서 발생하는 산업재해에 대한 정량적 위험성 분석)

  • Seung-Hyun LEE;Su-Hyung KIM;Kyung-Jin RYU;Yoo-Won LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.161-169
    • /
    • 2024
  • This study employs Bayesian network analysis to quantitatively evaluate the risk of incidents in trap boats, utilizing accident compensation approval data spanning from 2018 to 2022. With a dataset comprising 1,635 incidents, the analysis reveals a mortality risk of approximately 0.011 across the entire trap boat. The study significantly identifies variations in incident risks contingent upon fishing area and fishing processes. Specifically, incidents are approximately 1.22 times more likely to occur in coastal compared to offshore, and the risk during fishing processes outweighs that during maintenance operations by a factor of approximately 23.20. Furthermore, a detailed examination of incident types reveals varying incidence rates. Trip/slip incidents, for instance, are approximately 1.36 times more prevalent than bump/hit incidents, 1.58 times more than stuck incidents, and a substantial 5.17 times more than fall incidents. The study concludes by providing inferred mortality risks for 16 distinct scenarios, incorporating fishing areas, processes, and incident types. This foundational data offers a tailored approach to risk mitigation, enabling proactive measures suited to specific circumstances and occurrence types in the trap boat industry.