• Title/Summary/Keyword: Form Function

Search Result 3,878, Processing Time 0.034 seconds

ON GEOMETRIC PROPERTIES OF THE MITTAG-LEFFLER AND WRIGHT FUNCTIONS

  • Das, Sourav;Mehrez, Khaled
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.949-965
    • /
    • 2021
  • The main focus of the present paper is to present new set of sufficient conditions so that the normalized form of the Mittag-Leffler and Wright functions have certain geometric properties like close-to-convexity, univalency, convexity and starlikeness inside the unit disk. Interesting consequences and examples are derived to support that these results are better than the existing ones and improve several results available in the literature.

A Closed-form Green마s Function for Top-Covered Microstrip Substrate (Top-Covered 마이크로스트립구조의 Closed-form 그린함수)

  • 김건우;고지환;이영순;조영기
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.109-112
    • /
    • 2002
  • So far, the closed-form Green's functions have been derived almost for th open microstrip structures. In the present study, closed-form Green's functions for a top-covered microstrip structure are derived. And an effect of top-cover is discussed in comparison with open structure.

  • PDF

A study on Abstract Expression Showed in Modern Art and Modern Costume (현대예술과 현대복식에 나타난 추상적 표현에 관한 연구)

  • Lee, Eun-Young
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.221-231
    • /
    • 1991
  • We have thought artistic charactics of modern form is abstract expression and purity and unity sight. Specially, modern sculpture form has strict geometrical form as showed in primitive art. In this circumstances, modern costume has stylized more artistic form in pure sight. Artistic characteristics showed in those collections are picturesque in material and sculpture in shillouette. Picturesque material pointed in decoretive function and simple shillouette pointed in sculpturesque body in modern costume.

  • PDF

Blind Frequency offset Estimation for Radio Resource Saving in OFDM (OFDM에서 무선자원 절약을 위한 블라인드 주파수 옵셋 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1001-1009
    • /
    • 2009
  • In this paper, an efficient blind frequency offset estimation method for radio resource saving in orthogonal frequency division multiplexing (OFDM) systems is proposed. In the proposed method, we obtain two time different received OFDM signal blocks by using the cyclic prefix and define the cost function by using the two OFDM signal blocks. We show that the cost function can be approximately expressed as a closed form cosine function. The approximated cosine function can be obtained from three independent cost function values calculated at three different frequency offsets. In the proposed method, the frequency offset can be estimated by calculating a frequency offset minimizing the approximated cosine function without searching all the frequency offset range. Unlike the conventional methods such as MUSIC method, the accuracy of the proposed method is independent of the searching resolution since the closed form solution exists. The computer simulation shows that the performance of the proposed method is superior to those of the MUSIC and the oversampling method.

Evaluation of RVE Suitability Based on Exponential Curve Fitting of a Probability Distribution Function (확률 분포 함수의 지수 곡선 접합을 이용한 RVE 적합성 평가)

  • Chung, Sang-Yeop;Yun, Tae Sup;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.425-431
    • /
    • 2010
  • The phase distribution in a multi-phase material strongly affects its material properties. Therefore, a proper method to describe the phase distribution of a material is needed. In this research, probability distribution functions, two-point correlation and lineal-path functions, are used to represent the probabilistic phase distributions of a material. The probability distribution function is calculated using a numerical method and is described as an analytical form via exponential curve fitting with three parameters. Application of analytical form of probability distribution function is investigated using two-phase polycrystalline solids and soil samples. It is confirmed that the probability distribution functions can be represented as an exponential form using curve fitting which helps identifying the applicability of a representative volume element(RVE).

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

A generalized form of software reliability growth (소프트웨어 신뢰도 성장모델의 일반형)

  • 유재년
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.11-16
    • /
    • 1998
  • We analyze the software reliability growth models for the specified period from the viewpoint of theory of differential equations. we defien a genralized form of reliability growth models as follws: dN(t)/dt = b(t)f(N(t)), Where N(t) is the number of remaining faults and b(t) is the failure rate per software fault at time t. We show that the well-known three software reliability growth models - Goel - Okumoto, s-shaped, and Musa-Okumoto model- are special cases of the generalized form. We, also, extend the generalized form into an extended form being dN(t)/dt = b(t, .gamma.)f(N(t)), The genneralized form can be obtained if the distribution of failures is given. The extended form can be used to describe a software reliabilit growth model having weibull density function as a fault exposure rate. As an application of the generalized form, we classify three mentioned models according to the forms of b(t) and f(N(t)). Also, we present a case study applying the generalized form.

  • PDF