• Title/Summary/Keyword: Forkhead

Search Result 71, Processing Time 0.022 seconds

Atheroprotective nasal immunization with a heat shock protein 60 peptide from Porphyromonas gingivalis

  • Joo, Ji-Young;Cha, Gil-Sun;Kim, Hyun-Joo;Lee, Ju-Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.3
    • /
    • pp.159-170
    • /
    • 2020
  • Purpose: Immunization with Porphyromonas gingivalis heat shock protein 60 (PgHSP60) may have an immunoregulatory effect on atherogenesis. The aim of this study was to determine whether nasal immunization with a PgHSP60 peptide could reduce atherosclerotic plaque formation in apolipoprotein E knockout (ApoE KO) mice. Methods: Seven-week-old male ApoE KO mice were assigned to receive a normal diet, a Western diet, a Western diet and challenge with PgHSP60-derived peptide 14 (Pep14) or peptide 19 (Pep19), or a Western diet and immunization with Pep14 or Pep19 before challenge with Pep14 or Pep19. Results: Atherosclerotic plaques were significantly smaller in mice that received a Western diet with Pep14 nasal immunization than in mice that received a Western diet and no Pep14 immunization with or without Pep14 challenge. An immunoblot profile failed to detect serum reactivity to Pep14 in any of the study groups. Stimulation by either Pep14 or Pep19 strongly promoted the induction of CD4+CD25+ forkhead box P3 (FoxP3)+ human regulatory T cells (Tregs) in vitro. However, the expression of mouse splenic CD4+CD25+FoxP3+ Tregs was lower in the Pep14-immunized mice than in the Pep14-challenged or Pep19-immunized mice. Levels of serum interferon gamma (IFN-γ) and transforming growth factor beta were higher and levels of interleukin (IL) 10 were lower in the Pep14-immunized mice than in the other groups. Induction of CD25- IL-17+ T helper 17 (Th17) cells was attenuated in the Pep14-immunized mice. Conclusions: Nasal immunization with Pep14 may be a mechanism for attenuating atherogenesis by promoting the secretion of IFN-γ and/or suppressing Th17-mediated immunity.

The Distribution of CD8- and Foxp3-positive T Cells in Skin Squamous Cell Tumors and Basal Cell Carcinomas (피부에 발생하는 편평세포종양 및 기저세포암종 조직에서 CD8 양성 T 림프구와 Foxp3 양성 T 림프구의 분포에 관한 연구)

  • Jang, Tae Jung
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.686-692
    • /
    • 2015
  • Cancer is subject to dynamic interactions between contrary immune reactions that drive both tumor growth and suppression. Forkhead box p3 positive T cells (Foxp3 positive T cells) might support tumor promotion, while CD8 positive T cells might protect the host. The present study examined the distributions of CD8- and Foxp3-positive T cells and CD8 positive T cells/ Foxp3 positive T cells ratio in skin squamous cell carcinoma (SCC) and its precancerous lesions; it also compared this with data for basal cell carcinoma (BCC). Iimmunohistochemical staining for CD8 and Foxp3 was conducted in 20 cases of SCC, Bowen's disease (BD), actinic keratosis (AK) and BCC. The BD and SCC cases exhibited significantly increased numbers of both CD8- and Foxp3-positive T cells in their advancing regions compared with the AK and BCC cases, and the BD cases exhibited significantly lower CD8 positive T cells / Foxp3 positive T cells ratio in these regions than did the AK and BCC cases. There was no significant difference in both T cells and the ratio between BD and SCC. The degree of both T cells infiltration differed between the advancing and central areas in SCC and BCC. Immune micro-environments differ between cutaneous squamous cell tumors and BCC and differ as well among tumor compartments.

Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression

  • Heo, Seong Beom;Lim, Sun Woo;Jhun, Joo Yeon;Cho, Mi La;Chung, Byung Ha;Yang, Chul Woo
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.18-27
    • /
    • 2016
  • Background: It is not clear whether ginseng affects cyclosporine A (CsA)-induced desirable immunosuppressive action. In this study, we evaluated the immunological influence of combined treatment of ginseng with CsA. Methods: Using CD4+ T cells from mouse spleens stimulated with the T cell receptor (TCR) or allogeneic antigen-presenting cells (APCs), we examined the differentiation of naïve T cells into T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and their cytokine production during treatment by Korean Red Ginseng extract (KRGE) and/or CsA. The influence of KRGE on the allogeneic T cell response was evaluated by mixed lymphocyte reaction (MLR). We also evaluated whether signal transducer and activator of transcription 3 (STAT3) and STAT5 are implicated in this regulation. Results: Under TCR stimulation, KRGE treatment did not affect the population of CD4+interferon gamma ($IFN{\gamma}$)+ and CD4+interleukin (IL)-4+ cells and their cytokine production compared with CsA alone. Under the Th17-polarizing condition, KRGE significantly reduced the number of CD4+IL-17+ cells and CD4+/phosphorylated STAT3 (p-STAT3)+ cells, but increased the number of CD4+CD25+forkhead box P3 (Foxp3)+ cells and CD4+/p-STAT5+ cells compared with CsA alone. In allogeneic APCs-stimulated CD4+ T cells, KRGE significantly decreased total allogeneic T cell proliferation. Consistent with the effects of TCR stimulation, KRGE reduced the number of CD4+IL-17+ cells and increased the number of CD4+CD25+Foxp3+ cells under the Th17-polarizing condition. Conclusion: KRGE has immunological benefits through the reciprocal regulation of Th17 and Treg cells during CsA-induced immunosuppression.

Mucosal Immunity Related to FOXP3+ Regulatory T Cells, Th17 Cells and Cytokines in Pediatric Inflammatory Bowel Disease

  • Cho, Jinhee;Kim, Sorina;Yang, Da Hee;Lee, Juyeon;Park, Kyeong Won;Go, Junyong;Hyun, Chang-Lim;Jee, Youngheun;Kang, Ki Soo
    • Journal of Korean Medical Science
    • /
    • v.33 no.52
    • /
    • pp.336.1-336.12
    • /
    • 2018
  • Background: We aimed to investigate mucosal immunity related to forkhead box P3 ($FOXP3^+$) regulatory T (Treg) cells, T helper 17 (Th17) cells and cytokines in pediatric inflammatory bowel disease (IBD). Methods: Mucosal tissues from terminal ileum and colon and serum samples were collected from twelve children with IBD and seven control children. Immunohistochemical staining was done using anti-human FOXP3 and anti-$ROR{\gamma}t$ antibodies. Serum levels of cytokines were analyzed using a multiplex assay covering interleukin $(IL)-1{\beta}$, IL-4, IL-6, IL-10, IL-17A/F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, interferon $(IFN)-{\gamma}$, soluble CD40L, and tumor necrosis factor-${\alpha}$. Results: $FOXP3^+$ Treg cells in the lamina propria (LP) of terminal ileum of patients with Crohn's disease were significantly (P < 0.05) higher than those in the healthy controls. $ROR{\gamma}t^+$ T cells of terminal ileum tended to be higher in Crohn's disease than those in the control. In the multiplex assay, serum concentrations (pg/mL) of IL-4 ($9.6{\pm}1.5$ vs. $12.7{\pm}3.0$), IL-21 ($14.9{\pm}1.5$ vs. $26.4{\pm}9.1$), IL-33 ($14.3{\pm}0.9$ vs. $19.1{\pm}5.3$), and $IFN-{\gamma}$ ($15.2{\pm}5.9$ vs. $50.2{\pm}42.4$) were significantly lower in Crohn's disease than those in the control group. However, serum concentration of IL-6 ($119.1{\pm}79.6$ vs. $52.9{\pm}39.1$) was higher in Crohn's disease than that in the control. Serum concentrations of IL-17A ($64.2{\pm}17.2$ vs. $28.3{\pm}10.0$) and IL-22 ($37.5{\pm}8.8$ vs. $27.2{\pm}3.7$) were significantly higher in ulcerative colitis than those in Crohn's disease. Conclusion: Mucosal immunity analysis showed increased $FOXP3^+$ T reg cells in the LP with Crohn's disease while Th17 cell polarizing and signature cytokines were decreased in the serum samples of Crohn's disease but increased in ulcerative colitis.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Effector Memory CD8+ and CD4+ T Cell Immunity Associated with Metabolic Syndrome in Obese Children

  • Yang, Da-Hee;Lee, Hyunju;Lee, Naeun;Shin, Min Sun;Kang, Insoo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • Purpose: We investigated the association of effector memory (EM) CD8+ T cell and CD4+ T cell immunity with metabolic syndrome (MS). Methods: Surface and intracellular staining of peripheral blood mononuclear cells was performed. Anti-interleukin-7 receptor-alpha (IL-7Rα) and CX3CR1 antibodies were used to stain the subsets of EM CD8+ T cells, while anti-interferon-gamma (IFN-γ), interleukin-17 (IL-17), and forkhead box P3 (FOXP3) antibodies were used for CD4+ T cell subsets. Results: Of the 47 obese children, 11 were female. Children with MS had significantly higher levels of serum insulin (34.8±13.8 vs. 16.4±6.3 µU/mL, p<0.001) and homeostasis model assessment of insulin resistance (8.9±4.1 vs. 3.9±1.5, p<0.001) than children without MS. Children with MS revealed significantly higher frequencies of IL-7Rαlow CD8+ T cells (60.1±19.1% vs. 48.4±11.5%, p=0.047) and IL-7RαlowCX3CR1+ CD8+ T cells (53.8±20.1% vs. 41.5±11.9%, p=0.036) than children without MS. As the serum triglyceride levels increased, the frequency of IL-7RαlowCX3CR1+ and IL-7RαhighCX3CR1- CD8+ T cells increased and decreased, respectively (r=0.335, p=0.014 and r=-0.350, p=0.010, respectively), in 47 children. However, no CD4+ T cell subset parameters were significantly different between children with and without MS. Conclusion: In obese children with MS, the changes in immunity due to changes in EM CD8+ T cells might be related to the morbidity of obesity.

Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2

  • Wei Qin;Lin Yang;Xiaotong Chen;Shanyu Ye;Aijun Liu;Dongfeng Chen;Kunhua Hu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.326-341
    • /
    • 2023
  • Background and Objectives: Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results: Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions: These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

MiR-29a-3p Inhibits Proliferation and Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells via Targeting FOXO3 and Repressing Wnt/β-Catenin Signaling in Steroid-Associated Osteonecrosis

  • Changgeng Wang;Minghui Zhu;Demeng Yang;Xinyuan Hu;Xinyuan Wen;Aimei Liu
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.324-333
    • /
    • 2022
  • Background and Objectives: This study was to investigate the role of microRNA-29a-3p (miR-29a-3p) in human bone marrow mesenchymal stem cells (hBMSCs), and its relationship with steroid-associated osteonecrosis. Methods and Results: The online tool GEO2R was used to screen out the differentially expressed genes (DEGs) in GSE123568 dataset. Quantitative real time-polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29a-3p, forkhead box O3 (FOXO3), alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (OCN) and RUNX family transcription factor 2 (Runx2) in the hBMSCs isolated from the patients with steroid-associated osteonecrosis. CCK-8 assay was executed to measure cell viability; western blot assay was utilized to detect FOXO3, ALP, Runx2, OCN and β-catenin expression. Cell apoptosis and cell cycle were detected by flow cytometry. Immunofluorescence assay was used to detect the sub-cellular localization of β-catenin. Bioinformatics analysis and luciferase reporter gene assay were performed to confirm whether miR-29a-3p can combine with FOXO3 3'UTR. MiR-29a-3p was markedly up-regulated in the hBMSCs of patients with steroid-associated osteonecrosis, while FOXO3 mRNA was significantly down-regulated. Transfection of miR-29a-3p mimics significantly inhibited the hBMSCs' proliferation, osteogenic differentiation markers' expressions, including ALP, Runx2, OCN, and repressed the ALP activity, as well as promoted cell apoptosis and cell-cycle arrest. FOXO3 was identified as a target gene of miR-29a-3p, and miR-29a-3p can inhibit the expression of FOXO3 and β-catenin, and inhibition of miR-29a-3p promoted translocation of β-catenin to the nucleus. Conclusions: MiR-29a-3p can modulate FOXO3 expression and Wnt/β-catenin signaling to inhibit viability and osteogenic differentiation of hBMSCs, thereby promoting the development of steroid-associated osteonecrosis.

Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes (C2C12 근관세포에서 상엽에 의한 AMPK의 불활성화와 AICAR로 유도된 근위축 억제의 연관성에 관한 연구)

  • Lee, Yu Sung;Kim, Hong Jae;Jeong, Jin-Woo;Han, Min-Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.435-443
    • /
    • 2018
  • AMP-activated protein kinase (AMPK) functions as a metabolic master through regulating and restoring cellular energy balance. In skeletal muscle, AMPK increases myofibril protein degradation through the expression of muscle-specific ubiquitin ligases. Mori Folium, the leaf of Morus alba, is a traditional medicinal herb with various pharmacological functions; however, the effects associated with muscle atrophy have not been fully identified. In this study, we confirmed the effects of AMPK activation by examining the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, on the induction of atrophy and expression of atrophy-related genes in C2C12 myotubes. We also investigated the effects of the ethanol extract of Mori Folium (EEMF) on the recovery of AICAR-induced muscle atrophy in C2C12 myotubes. It was found that exposure to AICAR resulted in the stimulation of Forkhead box O3a (FOXO3a); an up-regulation of muscle-specific ubiquitin ligases such as Muscle Atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and a down-regulation of muscle-specific transcription factors, such as MyoD and myogenin; with the activation of AMPK. In addition, AICAR without cytotoxicity indicated a decrease in diameter of C2C12 myotubes. However, treatment with EEMF significantly suppressed AICAR-induced muscle atrophy of C2C12 myotubes in a dose-dependent manner as confirmed by a decrease in myotube diameter, which is associated with a reversed stimulation of FOXO3a by the inhibition of AMPK activation. These results indicate that the activation of AMPK by AICAR induces muscle atrophy, and EEMF has preeminent effects on the inhibition of AICAR-induced muscle atrophy through the AMPK signaling pathway.