• Title/Summary/Keyword: Forging mold

Search Result 43, Processing Time 0.018 seconds

Ceramic Direct Rapid Tooling with FDM 3D Printing Technology (FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo;Oh, Won-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

A Study on Edge Bridge Minimization of Fine Blanking Process (Fine Blanking의 가장자리 Bridge 최소화 방법에 관한 연구)

  • Kim, Gi-Tea
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.108-113
    • /
    • 2013
  • Industrialization and modernization of the beginning of the IT industry is growing very fast. Since telecommunications industry was developed rapidly, technologies about miniaturization and high-precision of parts have been actively developed to lead information revolution. generally, the entire shear surface of the product applying fine blanking technology must be very precise. Fine blanking is used to save cost by avoiding post-processing of the product. When using press blanking, it spends a lot of money on the production by using many post-processing. Fine blanking typically used in 0.5~18 mm thick steel plate. Because a lot of post-processing cost can be used to process, except for fine blanking. In order to develop components "CHANCE CONTENTS" in the fine blanking process, the purpose of this study is to minimize the edge of the bridge, secured 95% of the material thickness of the shear surface using the 1.6 mm thickness of the material SPCC. Blanking process by introducing after changing thickness through forging process, due to change in vee-rring force and counter force, the experimental amount of depressions and flatness and the shear surface were analyzed.

An Examination of the Characteristics and Manufacturing Techniques of Joseon-era Metal Bullets (조선시대 금속제 탄환의 특징과 제작기법 검토)

  • Choi, Bo Bae;Lee, Hye Jin;Kim, Myung Hoon;Jeong, Hyeon Jin
    • Conservation Science in Museum
    • /
    • v.28
    • /
    • pp.65-88
    • /
    • 2022
  • The characteristics and behavior of bullets are important because they are directly related to the firearm performance. However, research related to bullets have been small. In this paper, scientific analysis was conducted to find out the materials and manufacturing process of metal bullets during the Joseon Dynasty, owned by Korea Army Museum, and the types of firearms available were classified and organized according to the bullet diameter. As a result, bullets were classified into iron bullets, lead bullets, and lead-coated iron bullets. Most of the iron bullets and lead bullets were made from casting. Some iron bullets were made from forging. And the lead-coated iron bullet was made by pouring molten lead after putting the iron bullet into the mold. Finally, the bullets could be used for Hand Cannon, Matchlock Musket, Frankish Cannon, Hyeon-ja Cannon, Dae-Wiwon Cannon, Small Cannon, and Hong-Yi Cannon.