• Title/Summary/Keyword: Forging load

Search Result 207, Processing Time 0.018 seconds

A Study on the Process Sequence Design in Metal Forming including Deep Drawing (디프드로잉이 포함된 소성가공의 공정설계에 관한 연구)

  • 황병복;임중연;이호용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.107-117
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component and a washing machine container. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic and elastic-plastic FEM have been applied to simulate both of the conventional manufacturing processes, respectively, which include deep drawing and forging process. Simulations of one stage process from a selected stock to the final product shape are performed for generating information on additional requirements for metal flow. The best manufacturing processes are selected, which is using a hemispherical punch in the deep drawing process for both disk-brake piston component and washing machine container.

  • PDF

A Study on Heat Treatment for Improving Cold Forgeability of a Bearing Steel, SUJ2 (베어링강 SUJ2의 냉간 단조성 향상을 위한 열처리에 관한 연구)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 2009
  • In this paper, the effect of heat treatment on forgeability is investigated and an improved heat treatment cycle is proposed for the bearing steel, SUJ2. An application example of a bearing inner race cold forging, which has small cracks in the bottom after backward extrusion and piercing, is found from a cold forging industry. The process is evaluated by finite element analysis and several heat treatment cycles are examined in order to propose an improved heat treatment cycle. The effect of heat treatment on material hardness and tool life, dimensional accuracy and forming load is revealed through experiment.

  • PDF

Experimental Investigation on the Flow Control of Hub Clutch for Automobile (자동차용 허브 클러치의 유동제어에 관한 실험적 연구)

  • 박종남;김동환;김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.430-438
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in orther to change of the cold forging from conventional deep drawing forming. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be performed double action press. The proposed technology is applied to hub clutch model which is part of auto-transmission for automobile. The purpose of this study is to investigate the material flow behavior of hub clutch through control the relative velocity ratio and the stroke of mandrel and punch using the flow forming technique. First of all, the finite element simulations are applied to analyse optimal process conditions to prevent flow defect(necking defect etc.) from non-uniform metal flow, then the results are compared with the plasticine model material experiments. The punch load for real material is predict from similarity law. Finally, the model material experiment results are in good agreement with the FE simulation ones.

Finite Element Analysis of P/M Connecting Rod Forging (분말컨넥팅로드 단조의 유한 요소 해석)

  • Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1992
  • Sintered P/M connecting rod is forged to increase density and to satisfy dimensional specifications. Flow of the materials is different form that of wrought materials due to pores in the preform. The Mises yield function was modified to. include the first invariant of stress tensor, and the associated flow rule was derived by applying the normality rule to the yield function. Axisymmetric and plane-strain finite element analyes were carried out for the ring and beam portions of the connecting rod, respectively. The flow of the preform and density change of the analysis are presented in this paper. A load-stroke curve was also presented by superimposing analysis results for the ring and beam portions.

  • PDF

A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ Bulk Metallic Glasses using micro-forging and Finite Element Method applications (마이크로 단조를 이용한 Zr 계 벌크 비정질합금의 미세 성형성 평가와 유한요소해석 적용에 관한 연구)

  • Kang Sung-Gyu;Park Kyu-Yeol;Son Seon-Cheon;Lee Jong-Hon;Na Young-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.153-161
    • /
    • 2006
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro- formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values ($=A_f/A_g$), where $A_g$ is cross-sectional area of U groove, and $A_f$ the filled area by material. Micro-forging process was simulated and analyzed by applying finite element method. FEM simulation results showed reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions were tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM simulation using a commercial software, DEFORM was confirmed to be applicable for the optimization of micro-forming process.

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

The Improvement of Bearing-Race Forming Process Using UBET Analysis (베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상)

  • Kim, Young-Ho;Bae, Won-Byong;Park, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load (응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구)

  • Choi, Seung-Il;Ji, Myoung-Kuk;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.

Application of F.E.M to the Forming Process of Valve-Spring Retainer (유한요소법을 이용한 Valve-Spring Retainer의 공정해석)

  • 오현석;박성호;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.57-68
    • /
    • 1995
  • A design methodology is applied for manufacturing the valve-spring retainer component. The design criterion is the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic TEM has been applied to simulate the conventional five-stage manufacturing processes, which include mainly backward extrusion and heading process. Simulations of one step process from selected stocks to the final product shape are performed for a possibly better process than the conventional one.

  • PDF