• Title/Summary/Keyword: Forging Test

검색결과 163건 처리시간 0.021초

삼차원 곡면에 대한 접촉해석기법의 개발 (Development of Contact Algorithms for Three Dimensional Surfaces)

  • 박채현;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.157-164
    • /
    • 1994
  • Finite element analysis of material deformation is successfully utilized to understand metal forming processes such as forging, extrusion and deep drawing. However, such analysis involves contact problems; a free node touches a die surface and a contact node slips along the die surface. In the present investigation, appropriate contact algorithms were developed assuming that a three dimensional surface can be divided into bilinear patches and that nodal velocities are linear during an incremental time. The algorithms were coded into a computer program and tested for a simple surface. Comparison of the test result with that obtained from a commercial code is presented and discussed.

  • PDF

알루미늄 튜브 온간 하이드로포밍 성형성에 관한 연구 (Studies on the Warm Hydroformability of Aluminum Tubes)

  • 김봉준;류종수;김대현;김동우;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.198-201
    • /
    • 2004
  • Aluminum alloys have high potential for weight reduction in automotive and other applications. But aluminum alloys have relatively low tubular hydroformability which can be enhanced by conducting the hydroforming at elevated temperatures. Hot working processes are commonly used in bulk forming such as forging and rolling, but still is rare in sheet metal forming like hydroforming. In this study hydroforming test at elevated temperatures is performed by special designed induction heating system to investigate the hydroformability of aluminum alloys. The high temperature formability characteristrics are obtained by 1?fitting forming test and circular bulging test and the effects of the process parameters such as feeding amount, internal pressure and temperatures on the tubular forming limits are mainly investigated.

  • PDF

대형 트럭용 경량 알루미늄 I형 래디어스 로드 개발 (Development of Lightweight Aluminum I Type Radius Rod for Heavy Trucks)

  • 최규재;이기녕;하태수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.58-64
    • /
    • 2008
  • An aluminum radius rod using rheo-forging method has been developed for heavy commercial vehicles to decrease vehicle unsprung weight. To design the shape of the rod, structural simulations are performed using two load cases. To evaluate durability performance of the rods, a test system which has simultaneous 3 axes actuating system is developed. And 3 axes durability test conditions are established based on vehicle field tests. Using the test systems and the conditions, the durability test is carried out and the rods have passed the test conditions of 700,000 cycles. The weight of a developed aluminum radius rod is 4.2kg and it was drastically reduced by 48.8 percent in comparison with the weight of a steel radius rod.

클러치 디스크용 분말야금 스플라인 허브의 기계적성질에 관한 연구 (Study on the Mechanical Properties of Power Metallurgy Spline Hub for Clutch Disc)

  • 최문일;장진호;강성수
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.104-110
    • /
    • 1998
  • In automotive industries, various processes for the cost reduction have been investigated lively. As one of them, powder metallurgy becomes influential. Compared to other methods used for he manufacture of steel components the Powder metallurgy process is competitive primarily due to the small number of production steps to reach the final geometry and thereby also the energy-efficiency. In this paper, to alter present forging process into powder metallurgy process by which the automotive clutch disc spline hub is manufactured machining process, the mechanical properties of sintered materials is investigated by specimen test. Selecting the 3 kinds of materials-SMF 4040, SMF 9060 and DHP-1, their properties according to heat treatment such as carburizing -tempering and plasma-nitrodizing are compared. By result of specimen test - tensile test, compression ring test, Impacting test, measurment of hardness, and microstructure analysis - we concluded that SMF 9060 and carburizing-tempering heat treatment is an optimal material and heat treatment method for the spline hub. It will be able to reduce manufacturing cost and weight.

  • PDF

음향방출을 이용한 저항 점용접의 용접 품질평가 (Quality Evaluation of Resistance Spot Welding using Acoustic Emission)

  • 조대희;이장규;박성완;조진호;김봉각;우창기
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.98-104
    • /
    • 2006
  • In this paper, for the purpose of investigation the acoustic emission(AE) behaviors during resistance spot welding process and tension test of spec steels. As the results present the resistance spot welding method that can get suitable welding qualities or structural integrity estimating method. The resistance spot welding process consists of several stages: set-down of the electrodes; squeeze; current flow; forging; hold time; and lift-off. Various types of AE signals are produced during each of these stages. For tensile-shear test and cross tensile test in resistance spot welded specimens, fracture pa 야 ems are produced: tear fracture; shear fracture; and plug fracture. Tensile-shear specimens strength appeared higher than cross tensile specimens one. In case of tensile-shear specimen happened tear fracture that crack happens in most lower plate. Also, in case of cross tensile specimens, upper plate and lower plate are detached perfect fracture was exposed increases a little as acting force is lower than ordinary welding condition. Therefore, the structure which is combined by resistance spot welding confirmed that welding design must attain so that shear stress may can interact mainly.

고인성 비조질강 샤시부품 개발 (Development of Chassis Parts Using High Toughness Micro-alloyed Steel)

  • 이시엽;김혁
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.1-6
    • /
    • 2012
  • This paper developed the chassis part as micro-alloyed steel with high toughness. The performance of micro-alloy steels are superior to similar heat treated steels. The strengthening effects of vanadium make micro-alloyed steels particularly suited for high-strength-steel applications. The disadvantages are that ductility and toughness are not as good as quenched and tempered (Q&T) steels. Precipitation hardening increases strength but may contribute to brittleness. Toughness can be improved by reducing carbon content and titanium additions. dispersed titanium nitrides (TiN) formed by titanium additions effectively prevents grain coarsening. Grain refinement increases strength but also improves toughness. For the chassis parts using high toughness micro-alloy steel, it had proven superior to a plain steel forging by static strength test and endurance test.

서보건을 이용한 알루미늄 합금의 저항 점용접 (Spot Welding of Aluminum Alloys Using Servogun)

  • 임창식;장희석
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.43-49
    • /
    • 2004
  • Conventional method for electrode force application in resistance spot welding(RSW) processes is to use pneumatic cylinder. However, due to its inherent problems in pneumatic power system such as compressibility of air and poor transient response characteristics, new electrode force system with servo control are recently introduced in RSW machine. This machine is called “servogun”. The purpose of this study is to evaluate performance of servogun in case of spot welding of aluminum alloy. Aluminum alloy(A5052) sheets are spot welded using pneumatic gun and servogun. Both results are compared by means of macro cross-section etching test and tensile shear strength test. Numerous previous research have reported nugget with many voids and cracks are not uncommon defects in spot welds with aluminum alloy. The experimental results show similar defects in case of pneumatic gun. In contrast, use of servogun considerably reduced generation of voids and cracks. In case of step-wise increased forging force at the end of welding cycle with servogun, crack-free and void-free nuggets have been observed. The performance of servogun has been also verified by series of tensile shear test. Higher strength values have been achieved with servogun in comparison to that of pneumatic gun.

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.

열간 단조용 비조질강의 고온 변형 거동에 관한 연구 (High Temperature Deformation Behavior of Microalloyed Hot Forging Steels)

  • 위겸복;이경섭
    • 한국재료학회지
    • /
    • 제2권5호
    • /
    • pp.343-352
    • /
    • 1992
  • 고온 압축 시험을 이용하여 열간 단조용 비조질강의 고온 변형 거동을 온도, 변형률속도, 합금원소에 따라 조사하였다. 고온 압축 시험에서 얻은 유동 응력 곡선의 형태와 조직관찰로부터 고온 변형 기구는 동적 재결정임을 알 수 있었다. 최대응력에 이르는 변형률은 온도가 증가할수록 작아지고 변형률속도가 빠를수록 크게 나타났다. Nb-V-Mo강은 Nb-V강에 비하여 최대응력은 증가하였으나 동적 재결정은 빨라졌다. 1.2Mn-0.09Nb강은 1.0Mn-0.05Nb강에 비하여 최대응력은 증가하였으나 동적재결정은 지연되었다. C-Nb-V강은 C강에 비하여 최대응력이 증가하였으며 동적 재결정은 지연되었다. 열간변형에 대한 구성방정식은 멱수법칙의 형태를 가졌다. Zener-Hollomon 파라미터가 증가할수록 동적 재결정립은 미세해졌고, 동적 재결정립과 Zener-Hollomon 파라미터와의 관계는 멱수법칙으로 정량화할 수 있었다.

  • PDF

열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가 (Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy)

  • 박성현;김재권;김성웅;김승언;박노진;오명훈
    • 열처리공학회지
    • /
    • 제32권6호
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.