• Title/Summary/Keyword: Forging Temperature

Search Result 322, Processing Time 0.024 seconds

Development of Low Annealing treatment omission steel by new rolling process (새로운 압연Process 구축을 통한 연화소둔 열처리생략강개발)

  • Kim B. H.;Choi K. S.;Heo C. Y.;Kim K. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.27-36
    • /
    • 2004
  • Contemporary objectives for steel rod rolling processing are increasingly complex and often contrasting i.e. obtaining a desired product with optimum combination of properties such as strength, toughness and formability at lower cost. Low-alloy steel rods have been produced with several heat treatments for drawing and forging processes at room temperature. In order to reduce these heat treatments much of the researches concerning of high temperature mechanical behavior of steel rods have been conducted at wire rod mill of POSCO. In this present work, optimizations of rolling temperature and cooling rate for JS-SCM435 are performed to eliminate softening heat treatment(Low Temperature Annealing) for drawing process. The results from the optimization changed the microstructure of rods after rod rolling from Bainite with high tensile strength of 1000Mpa to Pearlite and Ferrite with appropriate strength of 750Mpa that is equivalent tensile strength after softening heat treatment.

  • PDF

Three-dimensional Thermo-viscoplastic Finite Element Analysis of Cogging Process for Lange Ingots (대형 강괴 코깅공정의 3차원 열-점소성 유한요소 해석)

  • 조종래;박치용;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.103-114
    • /
    • 1992
  • Cogging is generally the initial and primary step in the manufacture of practically all large open-die forgings, and consists of forging and ingot by reducing the cross-section and simultaneously enlarging the body. A three-dimensional thermo-viscoplastic finite element model is used to study the distribution of internal stresses and strains of workpiece and temperature of workpiece and die during cogging process. Simulations are carried out on an circular ingot, using v-die and flat die, to study the effects of die configuration, die width, penetration depth, temperature gradient, die overlapping and pass design.

  • PDF

Process Analysis for Rheo-Forming of Aluminum Materials (알루미늄재료의 Rheo-forming을 위한 성형공정해석)

  • Seo P. K.;Jung K. Y.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF

The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation (스테인레스 304의 열간동적재결정과 미세조직 예측)

  • Kwon Y. P.;Cho J. R.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • The flow stress of 304 stainless steel during high during hot forming process were determined by conducting hot compression tests at the range of 1273 K-1423 K and 0.05 /s-2.0 /s as these are typical temperature and strain rate in hot forging operation. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. Dynamic recrystallization was found to be the major softening mechanism with this conditions as previous studies. A finite element analysis was performed to predict the recrystallized volume fraction and the mean grain size in hot compression of 304 stainless steel.

  • PDF

The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation (304 스테인리스강의 열간동적재결정과 미세조직 예측)

  • 권영표;조종래;이성열;이정환
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.573-578
    • /
    • 2001
  • The flow stress of 304 stainless steel during hot forming process were determined by conducting hot compression tests at the range of 1273 K∼1423 K and 0.05 /s∼2.0 /s as these are typical temperature and strain rate in hot forging operation. In this material, Dynamic recrystallization was found to be the major softening mechanism with this conditions as Previous studies. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. In the constitutive model, the effects of strain hardening and dynamic recrystallization were taken into consideration. A finite element method connected to constitutive model was performed to predict the dynamic recrystallization behaviors and also stress-strain curves in hot compression of 304 stainless steel.

  • PDF

Effect of tempering treatment on the mechanical properties in 12Cr heat resistant steel with ferrite phase (페라이트상을 갖는 12Cr 내열강의 기계적성질에 미치는 템퍼링 처리의 영향)

  • Kang, C.Y.;Lee, S.M.;Cho, Y.K.;Byun, S.S.;Jung, B.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • Effect of tempering treatment on the mechanical properties of 12Cr heat resistant steel with ferrite phase was investigate in this study. As time and temperature of tempering treatment were increase, C and Cr contents in matrix structure were decreased. Due to increase of the amount of Cr26C6 type carbides. It was confirmed in mechanical properties experimental that tensile strength and hardness were decreased, while elongation and impact value were, increased with increasing the time and temperature.

Reheating Process of Semi-Solid Aluminum Alloy (반융용알루미늄재료의 재가열공정)

  • 강성수;도영진;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.16-27
    • /
    • 1997
  • A semi-solid forming has a lot of advantages compared to the die casting, squeeze costing and convenctional forging, therefore, semi-solid forming process are now becoming of industial interest for the production of metal components and metal matrix composites. However, the material behaviour in the semi-solid temperature range is not sufficiently known although it controls the whole process through forces and geometry evolutions bcause the behaviour of metal slurries is complex. The semi-solid materials(SSM) fabricated under electric-magnetic stirring condition is necessary to be applicate in forming process. A reheating conditions were studied with the reheating time, holing time and reheating temperatures. The microstructure of SSM (which specimen size:d 40${\times}$i60) on condition of heating time 10min and heating temperature 590$^{\circ}C$ is most globular and finest one. The microstructure of SSM(specimen size:d75${\times}$i60) reheated under the three step reheating conditions is most globular and finest.

  • PDF

Prediction of Relative Density by Hardness in Compressed Sintered-Metal Powder (경도를 이용한 소결압축금속분말의 상대밀도 예측)

  • 김진영;박종진
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.508-516
    • /
    • 1997
  • Forging process on sintered powder metals has been applied to produce automotive parts which require a high level of strength. In those parts, the measurement of relative density is very important because a low relative density density causes deterioration of strength. In the present study, an indentation force equation was proposed by which the result obtained from the hardness measurement is used to evaluate the relative density. This equation was applied to the prediction of the relative density in cylindrical specimens which were first sintered and then forged at the room temperature and at an elevated temperature. The experimental results were compared with predictions with and without consideration of the workhardening effect on the powder.

  • PDF

A Study on the Temperature-Diffusion Analysis of Induction Heating Jar (Induction Heating Jar의 온도분포 해석에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok;Lee, Bong-Seob;Lee, Young-Mee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.79-82
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, preheating for forging operations, melting or cooking. In this paper, it was presented the magneto-thermal analysis of an induction heating jar(IH-JAR) with the material value of the stainless and the aluminum for efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FEM) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was represented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

  • PDF

A Study on the Reliability Analysis of Al Oil Pressure Switch for Automobiles (Al 소재의 자동차용 Oil Pressure Switch의 신뢰도 분석에 관한 연구)

  • Cho, Myung-Ho;Kim, Tae-Hun;Rhie, Kwang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.150-156
    • /
    • 2009
  • The oil pressure switch(OPS) for automobile is very important part to prevent an overheated engine and other problems by checking the operation of an engine oil system and displaying oil signs on a dashboard. OPS is the part that receives various stress caused by temperature, vibration, and corrosion in an engine room. Regarding existing steel OPS cases, there occur field errors due to the rust, and much concern comes from the low anticorrosion caused by CR6+ Free according to the restrictions of heavy metals. Therefore, the study analyzed average life, the failure rate, and reliability through the tests of performance according to temperature changes, mechanical strength, and run-test in order to confirm if the use of the oil pressure switch with Al of anti-corrosion can improves the reliability, instead of the existing steel products.