• 제목/요약/키워드: Forging Temperature

검색결과 322건 처리시간 0.022초

연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구 (A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator)

  • 송승은;권혁홍
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

열ㆍ온간 단조에서 그라파이트 윤활제의 마찰 특성에 대한 연구 (Study for Frictional Characteristics of graphite lubricants in hot. warm forging)

  • 김동진;김병민
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.29-37
    • /
    • 2000
  • At present there are many theories as to how various lubricants used in forging perform the role of reducing friction. Little work has been carried out to determine the validity of these theories for solid lubricants. This paper covers the development and preliminary results of the experiments devised to illustrate the movement of graphite at the workpiece/tool interface in the work forging temperature range. The paper describes the results obtained from upsetting of rings between two flat dies for measurement of lubricant thickness and compaction of graphite for density-pressure relationship. These allowed the lubricant to be exposed to forging conditions and by applying the principles of Male's ring test the simple generation of a value fur friction factor could also be determined. The experiments have been undertaken to examine the behavior of lubricant for shot blasted surface and change of surface roughness. A simple computer model of the interface has been constructed characterizing the graphite layer in an attempt to simulate the boundary mechanics.

  • PDF

반용융 단조에서 가압 단계가 제품에 미치는 영향 (The Influence of Compression Step on Products for Semi-Solid Forging)

  • 최재찬;박형진;이병목
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.139-149
    • /
    • 1998
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near net shape products using light and hardly formable materials. Generally the SSF process is composed of slug is compressed during a certain holding time in order to completely fill the die cavity and accelerate the solidification rate. The decision of compression time is important since it can affect microstructural characteristics, mechanical properties and shape of products.. In order to determine it proper overall heat transfer coefficient between the slug and dies should be investigated. This paper presents the procedure to find the overall heat transfer coefficient between the slug and dies by nonlinear optimization of temperature and solid fraction for a cylindrical slug at compression step in closed-die semi-solid forging. In finite ele-ment heat transfer analysis release of latent heat during solidification was considered. The influence of the predicted compression time on miscrostructural characteristics mechanimcal properties and shape of products is finally investigated by experiment.

  • PDF

자동차용 일체형 유니버셜 샤프트 조인트의 냉간단조 공정 유한요소해석 (Finite Element Analysis on the Cold Forging Process of the Unified Universal Shaft Joint for the Automobile)

  • 권혁홍;송승은;김오승
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.582-588
    • /
    • 2011
  • This study was aimed at the design of the dies for the unified shaft joint using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

반용융 성형에서 A356합금의 최적 재가열 과정에 대한 연구 (A Study on the Optimum Reheating Profess of A356 Alloy in Semi-Solid Forming)

  • 윤재민;박준홍;김영호;최재찬
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.114-125
    • /
    • 2002
  • As semi-solid forging (SSF) is compared with conventional easting such as gravity die-easting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally speaking. SSF consists of reheating, forging, ejecting precesses. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power have much effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time when predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted by the reheating experiments. Results by neural network were on good agreement with those by experiment. Polynominal regression analysis was formulated by using the test data from neural network. Optimum processing condition was calculated to minimize the grain size, solid fraction standard deviation, otherwise, to maximize the specimen temperature average. In this time, discussion is liven about reheating process of row material and results are presented with regard to accurate process variables for proper solid fraction, specimen temperature and grain size.

반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구 (A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming)

  • 윤재민;김영호;박준홍;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF

Udimet 720Li 합금의 고온변형 및 결정립분포 예측 (Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake)

  • 염종택;나영상;박노광
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.538-546
    • /
    • 2002
  • Hot deformation behavior of Udiment720Li was characterized by compression tests in the temperature range of 10$25^{\circ}C$ to 115$0^{\circ}C$ and the strain rate range of $0.0005 s^{-1};to;5 s^{-1}$. The combination of dynamic material model (DMM) and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming. A dynamic recrystallization model coupled with FEM results was used to interpret the evolution of microstructures. In order to verify the reliability of the present coupled model, isothermal forging was performed in the temperature range 1050~115$0^{\circ}C$ at strain rates of $0.05 s^{-1};and;0.005 s^{-1}$. The present model was successfully applied to the hot forming process of Udimet720Li.

단조 금형 SCM435 고장력 볼트의 파손 해석 (Failure Analysis on SCM435 High Strength Bolt of Forging Die)

  • 윤서현;김민헌;남기우
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.649-655
    • /
    • 2019
  • Fracture behaviors of SCM435 high strength bolt have been studied including macroscopic and microscopic fracture observation, Energy Dispersive X-ray Spectroscopy, Vickers hardness test and applied stress evaluation. cracks (ratchet marks) were generated by the repetitive loads acting on the bolts, initial stress of bolt and the stress concentration. The applied stress was found to be slightly higher than the fatigue limit of the material. The initial stress of bolt must be removed, and the mold temperature during the process must be maintained by room temperature. Bolts are recommended to be peened to improve fatigue limit.

직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향 (Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging)

  • 신정호;류영주;김병옥;고인용;이오연
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.