• Title/Summary/Keyword: Forging Temperature

Search Result 322, Processing Time 0.025 seconds

Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature (나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석)

  • Kim, Hong-Gee;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

A Study on the Process Design of Non-Axisymmetric Forging Components (비축대칭 형상의 단조 공정 설계에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

Finite Element Analysis of Compression Holding step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • Park, J.C.;Park, H.J.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.102-108
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature, solid fraction and shrinkage at compression holding step for a cylindrical slug, then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Hot Forming Design of a CAM for Vessel Engine (선박엔진용 캠의 열간 성형공정설계)

  • Yeom, J.T.;Kim, J.H.;Kim, J.H.;Hong, J.K.;Lee, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.417-420
    • /
    • 2009
  • The hot forming process of a CAM for vessel engine was designed by finite element (FE) simulation and experimental analysis. An aim of process design was to achieve the near-net shaped CAM forgings by hot forging process. Based on the compression test results of the low alloy steel, deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and flow stability and/or instability criteria. From the processing map, the initial heating temperature was determined as $1200^{\circ}C$. FE analysis was simulated to predict the formation of rolling defects and deformed shape with different forging designs. Optimum process design suggested in this work was made by comparing with the CAM for vessel engine manufactured by actual forging process.

  • PDF

Microstructure change of large cast-forged product by heat treatment conditions (열처리 공정이 대형 주단조품의 조직변화에 미치는 영향)

  • Lee, M.W.;Lee, Y.S.;Lee, S.W.;Lee, D.H.;Kim, S.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.102-106
    • /
    • 2009
  • Thermal energy control is a important factor in a large size casting and forging. Good control of thermal energy makes characteristics and defect of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment by FEM simulation. Also, changes of temperature and microstructure for forged shell were predicted. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.

  • PDF

Hot Precision Forging with a Back-pressure of Al-Si Alloy for Scroll Type Compressor Parts (열간 배압 성형 기술을 이용한 Al-Si합금 스크롤의 정형 제조 기술)

  • 이영선;이정환;이상용;박영도;이운섭
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Hot precision forging with a back pressure was investigated for manufacturing of compressor parts made of Al-Si alloy. Disk-shaped blank made of Al-Si alloy was hot forged, and ribs were formed by loading back pressure on their top. The influence of the back pressure and die temperature on forgeability and properties of parts made of Al-Si alloy were examined. Using the F.E.M. simulation, we found the optimum vallue of back-pressure. The prototypes of scroll parts were forged into the near-net shape and satisfied the required properties.

  • PDF

A Structural Analysis System for Forging Die Sets Design, AFDEX/DIE (단조용 금형세트 설계용 구조해석 시스템 AFDEX/DIE)

  • 전만수;이민철;류찬호;조홍석
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In this paper, a general approach to structural analysis of forging die sets is presented and the related design system, AFDEX/DIE, is introduced. Structural analysis of die sets is conducted by the finite element method considering both contact problem and shrink fit. In the approach, amount of shrink fit is controlled by thermal load, i.e., temperature difference between die insert and shrink rings. The loading conditions are extracted automatically from the simulation results obtained by a rigie-thermoviscoplatic finite element method. Typical application examples are given, which show the applicability of the approach and the related program.

  • PDF

Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method (유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측)

  • 장용순;고대철;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF