• 제목/요약/키워드: Forging Stage

검색결과 122건 처리시간 0.023초

미세성형품의 정밀 냉간단조시 치수변화 분석 (Dimensional change of micro forged part on precision cold forging)

  • 이명원;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.254-258
    • /
    • 2008
  • Dimensional accuracy is very important quality in micro forged part, especially on forged part. Dimension of forged part is changed continuously during forging process. Loading, unloading and ejecting stage affects dimensional of the forged tool. The elasto-plastic material model for billet and elastic model for die were used to analyze these changes. At same time, the calculated results were compared and analyzed by the experiment on same conditions. From the experimental and analytical studies, we can calculated the amount of difference between die and forged part, that is 0.49% based on the die dimension. The dimensional change is smaller than that of general sized-forged part,0.6%.

  • PDF

재설계 기능을 갖는 냉간단조 공정설계용 전문가시스템 개발 (Expert System for Process Design of Cold Forging with Redesigning Scheme)

  • 김홍석;임용택
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2039-2052
    • /
    • 1994
  • In this study, an expert system for multi-stage cold forging process design of axisymmetric parts is developed. The available geometries are axisymmetric shape and cylinder with a hold in one end. The overall system is composed of knowledge-based system for process sequence design, output module interfaced with CAD system and material data-base. In the developed system, designed process can be modified in order to reduce the number of processes and make the distribution of forming load be almost equal at various deforming stages within the machine capacity. After process sequence design is completed, results can be stored as a text file or a commercial CAD system file. The capabilities of the developed system are illustrated through various examples of process design.

PAS부품의 공정개선에 관한 연구 (A Study on the Improvement of Forming Process of Power Assisted Steering Part)

  • 윤대영;황병복;유태곤
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF

크로핑 된 초기소재 형상이 금형수명 및 제품의 정밀도에 미치는 영향 (Influence of Cropped Initial Billet Shape on the Dimensional Tolerance and Tool Life)

  • 이동주;김동진;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2000
  • In cold forging by multi stage former, crowing process is important process for the high production rate and automation of forging process. But various cropping defects occur in cropping process such as orthogonality, ovality and unevenness, etc. These defects have harmful effects on the dimensional tolerance of products and tool life. So in this study, the cropping experiment is performed to examine influence of cropping process variables(clearance, cutting velocity, H/D) on occurrence of crowing defects and optimum process variables are selected, and then FE analysis is performed to verify influence of these defects on dimensional tolerance and tool life.

  • PDF

단 달림 형상의 예비성형체 성형에 대한 전방압출과 업셋팅 공정의 비교 (Comparision between Forward Extrusion and Upsetting Process for Preform with Stepped Shape)

  • 송두호;박용복;김민응
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 2000
  • In cold forging, the final product is usually given by multi-stage process and the preform with stepped shape can be manufactured through the various forging method. The forward extrusion and upsetting processes for preform with stepped shape have been analyzed by using the rigid-plastic finite element analysis code, InteFORM and compared for load and stroke according to ae reduction of weを An engineer should select the proper processes considering the capacity and the stroke of the corresponding press in the forging of the preform with stepped shape.

  • PDF

A COLD FORGING OF HELICAL GEAR FOR STEERING PINION

  • Kim M.E.;Kim Y.G.;Choi S.;Na K.H.;Lee Y.S.;Lee J.H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.59-62
    • /
    • 2003
  • The precision cold forging of helical gear for steering pinion has been studied. Because of the large helix angle, there are many difficult problems to control the material flow and part dimension. The die shape was proposed to improve the flow of workpiece. In order to improve the dimensional accuracy of forged part, a FE analysis was performed. The proposed die shape drives to flow amicably workpiece. The applied load was reduced up to 10 percent, compared to the conventional-shaped-die. The elastic deformation of die has been investigated quantitatively by the 3-dimensional FE analysis. The die-land has been expanded up to $10{\mu}m$ on loading stage, based on the FEM results. Therefore, the elastic deformation amounts should be taken into consideration to improve the dimensional accuracy of forged helical gear.

  • PDF

축 대칭 다단 냉간단조의 공정 및 금형 설계자동화에 관한 연구(I) (A Study on the Computer Aided Process Design of Multi Stage Cold Forging of Rotationally Symmetric Parts)

  • 최재찬;김형섭;허만조
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.84-93
    • /
    • 1989
  • This paper describes some development of Computer-Aided Process Planning System for cold-forging of rotationally symmetric parts(soild shape and solid-can combined shape) produced by the presses or formers. Using the developed system, forming sequences for producing final product are generated as graphic forms and process names, preform dimensions and process parameters(load, punch pressure, die pressure) are generated as routing sheets. Konwledges for forming sequence and process parameters are extracted from process limitations, plasticity theories, handbooks, relevent refferences and empirical know-how of experts in cold forging companies. Among extracted knowldeges, general and consistent knowledges are represented as design rules and are constructed as knowledge base. The developed system provides more powerful tool for through checking the producibilities of design, conformation of appropriate forming sequences and discoveries of new possibility. The results of the developed system are in good agreement with the practical data.

  • PDF

냉간단조 공정설계를 위한 intelligent CAD system에 관한 연구 (Intelligent CAD System for Cold Forging Using Fuzzy Theory)

  • 가타야마
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.1-25
    • /
    • 1995
  • This paper deals with the development of an intelligent CAD system for specifying the operation sequence in cold forging. Cold forging technology is facing with various new design requirements. Therefore, it is very important to develop a decision method for the operation sequence, with comparatively high adaptability to the new requirements. An intelligent CAD system which is the uncertain factors in human knowledge into consideration by applying fuzzy theory is established. Various actual design data about were organized, and these organized data were applied to the system as the case base. The system automatically generates the design data of operation sequence such as the forming method and the geometric data of products in each operation stage by the reasoning method applied the fuzzy pattern matching. By comparing the design results in the above system with the actual design data of a human expert, this paper presents that our method is useful for practical application.

베어링강의 고온변형 특성에 관한 연구 (A Study on Hot Deformation Behavior of Bearing Steels)

  • 문호근;이재성;유선준;전만수
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구 (A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator)

  • 송승은;권혁홍
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.