• 제목/요약/키워드: Forging Stage

검색결과 122건 처리시간 0.019초

온간단조금형의 수명연장에 관한 연구 (A Research on Lengthening the Life of Warm Forging Die)

  • 김세환
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.49-54
    • /
    • 2010
  • 자동차의 A.C 제너레이터(alternating current generator) 부품으로 사용되는 로터폴(rotor pole)을 가공할 때는 트랜스퍼온간단조금형(transfer warm forging die)으로 성형한다. 소재를 온간가공 영역으로 가열한 후 즉시 금형안으로 이송시켜 제1스테이지(1st stage)에서 업세팅가공(upsetting work)하고 제2스테이지(2nd stage)로 이송하여 측방압출(lateral extrusion)가공을 한다. 이때 측방압출 스테이지의 금형에서 다이블록(die block), 다이부싱(die bushing), 센터펀치(center punch), 사이드펀치(side punch)의 접촉면이 압출시의 과혹(過酷)한 조건에 견디지 못하여 쉽게 마멸(abrasion)되어 금형수명(die life)을 단축시키고 있다. 이 때문에 생산량 감소로 인한 납기지연, 금형의 수리보수시간 과다, 제품의 정밀도 저하 등의 문제점이 발생되고 있다. 이러한 문제점을 해결하기 위하여 금형재질 선정과 열처리 작업 싸이클 개선, 방전가공시의 트러블 해소, 핵심부품의 구조변경 등을 연구하여 금형수명을 40~50% 연장 하고자 하였다.

조향장치용 요크 자동다단 정밀냉간단조 공정에서 발생하는 스프링백의 수치적 및 실험적 검증 (Numerical and Experimental Study on Spring Back in Automatic Multi-Stage Precision Cold Forging Process of a Steering Yoke)

  • 김광민;김민철;황태민;정석환;정완진;전만수
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.115-122
    • /
    • 2019
  • In this paper, finite element analysis of an automatic five-stage precision cold forging process of a yoke, a steering part of a passenger's car, is conducted with emphasis on spring back analysis at the yoke-forming stage and its experimental verification is subsequently made. An elastoplastic finite element method with MINI-element technique employed for the analysis of the entire process is explained. There is emphasis that the thin film of material formed between the punch and die in the stage may result to some errors especially in elastoplastic finite element analysis of spring back due to frequent remeshing. The numerical robustness of the spring back analysis in regards to remeshing is hence shown first through investigation into its effect on the predicted spring back. Experimental measurement of displacement due to spring back is carried out for comparison with the predicted results, and they are in a qualitative agreement with each other.

다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증 (Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging)

  • 황원석;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

TR단조를 위한 환봉의 유도가열 해석에 관한 연구 (A Study on the Induction Heating Analysis of Round bar for TR forging)

  • 송민철;박덕수;이명규;이광학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.194-197
    • /
    • 2009
  • The TR forging is a kind of continuous grain flow forging. The preform of crank shaft for TR forging process was a round bar with a ring groove. In the first stage, the preform was partly heated by induction heating and then forged by vertical and horizontal force in sequence. In this study, the simulation process of induction heating was proposed to evaluate the temperature distribution of preform for TR forging. The equivalent circuit method was adopted to find coil current of the preform with a various dimensions and power levels. With these results, the coupled electromagnetic and transient thermal analysis for induction heating was performed to evaluate the temperature distribution at the preform of crank shaft during induction heating process. This FE analysis technique with equivalent circuit method was verified by comparing the analysis results with the experimental results.

  • PDF

냉간단조의 Ejecting 공정이 치수정밀도에 미치는 영향 (Dimensional accuracy and ejecting stage in cold forging)

  • 천세환;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.338-341
    • /
    • 2004
  • The dimension of forged part is different with the die dimension by the various effects, such as, elastic deformation and thermal effect. And, the difference amounts are not same according to the forging conditions, for example, forging mode, flow stress, etc. Therefore, the use of FEA is effective to predict and update the required die dimension. However, the variables for FE simulation are also as many as variables in the experiment. The variables give very much effect to the accuracy of FE results. At first, the material model is very deeply affected to the estimated dimension of forged part. And the considering of loading and ejecting stages is also important to increase the dimensional accuracy. The experiment and FEA are performed to investigate the dimensional changes and accuracy in cold forging. Two types of upsetting are used to survey the effects of forging mode and stages.

  • PDF

터빈 블레이드의 형단조 금형설계의 자동화에 관한 연구 (Development of Die Design System for Turbine Blade Forging)

  • 최병욱;조종래;왕지석;김동권;김동영
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.569-575
    • /
    • 1999
  • Computer programs have been developed to design the forging dies of turbine and compressor blades. The design of forging dies is based the side force and the filling of die cavity. In this study, slab method has been applied to simulate forging processes numerically. the program composed of Visual Basic also provides the informations of mean stress, total forging load, distribution of temperature, position of neutral line, total volume and volume of flash in the final stage to users. The preform position is predicted by the reverse slab method. The program has been successfully applied to various types of turbine blades.

  • PDF

3차원 단조해석용 후처리기 개발 (Development of a Post-Processor for Three-Dimensional Forging Analysis)

  • 정완진;최석우
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.542-549
    • /
    • 2003
  • Three-dimensional forging analysis becomes an inevitable tool to make design process more reliable and more producible. In this study, in order to make the investigation for three-dimensional forging analysis more conveniently and accurately, a new post processor was developed. For post-processing of multi-stage forging simulation, efficient data structure was proposed and applied by using STL. New file architecture was developed to handle successive and huge data efficiently, common in three-dimensional forging analysis. Since sectioning and flow tracing plays an important role in the investigation of analysis result, we developed an algorithm suitable for 4-node and 10-node tetrahedron. This flow tracing algorithm can trace and reverse-trace flow through remeshing. Developed program shows good performance and functionality. Especially, a big size problem can be handled easily due to proposed data structure and file architecture.

열간 자유단조시 내부 공극 압착 거동에 관한 유한요소해석 (FEM Analysis on Cavity Closure Behavior during Hot Open Die Forging Process)

  • 이영선;권용철;권용남;이승욱;김남수;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.50-52
    • /
    • 2007
  • Large size forged parts usually were made by hot open die forging because of the die cost, high applied load and small manufacturing quantities. Cast ingots were used in open die forging and the ingots almost included the cavities in its inside. Therefore, one of the aims for forging processes is to close and remove the cavities. However, its criteria were well not defined since the studies have many difficulties to investigate the cavity behaviors because of its large size. In this study, the cavity closure behavior was investigated by experimental and FE analysis. The FEM analysis is performed to investigate the overlap defect of cast ingots during free forging stage. The measured flow stress data were used to simulate the forging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}$-3D. The calculated results of cavity closure behavior are compared with the measured results before and after forging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

  • PDF

반용융 단조를 위한 SIMA 공정에서 유효 변형률이 구상화 조직에 미치는 영향 (The Influence of Effective Strain on the Globular Microstructure by SIMA Process for Semi-Solid Forging)

  • Park, H.J.;Lee, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.45-51
    • /
    • 1997
  • For semi-solid forging, it is necessarily required to prepare a workpiece with globular microstructure. Among several processes to obtain golbular microstructure, SIMA process is very simple and advantageous with respect to equipment. This paper presents the influence of effective strain on the globularization with aluminium 2024 alloy in cold working stage by SIMA process. Upsetting and forward extrusion are tested for cold working and induction heating is also carried out for reheating to obtain golbular microstructure. Microstructure is observed with an optical microscope. And finite element simulations to obtain effective strain in cold working stage are performed by using commercial finite element code, DEFORM.

  • PDF

저장매체용 스크류의 냉간 헤딩 공정 설계에 대한 연구 (Design of Cold Heading Process of a Screw for Storage Parts)

  • 서원상;민병욱;박근;나승우;이상훈;김종호;김종봉
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.48-53
    • /
    • 2011
  • Fasteners are used to join the various electronic products and machines. So, the quality and reliability of the fastener are strongly requested. In this study, the analyses of the multi-stage cold forging of TORX screws for storage parts are carried out. In manufacturing of TORX screws, crack and folding defects are observed. Therefore, the analysis is focused on the prediction of the defects. Based on the analysis results, the upper die and process conditions are redesigned to reduce the defects. The upper die shape for preform forming is redesigned to prevent folding and sharp shape change. The Cockroft-Latham damage criterion is introduced to predict the crack initiation. Analysis results shows that the maximum Cockroft-Latham damage value is decreased by 40% in the forming using the modified upper die.