• Title/Summary/Keyword: Forging Design

Search Result 444, Processing Time 0.025 seconds

Finite Element Analysis of an Incremental Forming Process for Joining the Ball with the Socket of a Concave Piston Assembly (오목형 피스톤 조립체의 볼과 소켓의 체결을 위한 점진적 성형공정의 유한요소해석)

  • Lee, M.C.;Eom, J.G.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.353-358
    • /
    • 2006
  • A three-dimensional finite element approach to process analysis and design for joining the socket with the ball by a kind of the rotary forging processes is presented in this paper. The rigid-plastic finite element method is employed and its results are used to reduce the number of process design tryouts. The approach is applied to developing a concave piston assembly for a high pressure hydraulic pump. Experiments show that the developed piston assembly satisfies the quality requirement on geometrical tolerance.

  • PDF

A Study on the shape Design of the Forward Forming Region in Cross Rolling of Multi-Step Shaft (다단 샤프트 제조용 크로스롤 금형 선단부의 형상설계에 관한 연구)

  • 김익삼
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.178-187
    • /
    • 1999
  • The Cross rolling between flat jaws, as a kind of hot forging, is the forming method to make the axisymmetric multi-step shaft by its rotation and pressure between flat jaws which move in opposite direction. The purpose of this study is to propose the optimal geometric data for shape development of the forward forming region. All data described on this paper are quantified by experiment from initial shape design to final shape development. As the result, proper geometric data are proved that lenth of the first forming area in the forward forming region is 1.5 times larger than circumference of work-piece and the progress angle changes 3 times smoothly.

  • PDF

Anisotropic Elasto-Viscoplastic Finite Element Analysis for Polycrystalline Materials (다결정재의 이방성 탄.점소성 유한요소해석)

  • 이용신;김응주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1997
  • The deformations of polycrystalline materials are modelled by linking a constitutive equation for the crystallographic slip of a single crystal to the macroscopic behavior of the aggregate. In this study, anisotropic elasticity (lattice stretching) of a cubic crystal is incoporated into the anisotropic plasticity from crystallographic slip. The constitutive description for the aggregate, derived from a crystal plasticity theory, is used to formulate a Consistent Penalty Finite Element Method for the anisotropic elasto-viscoplastic deformation of polycrystalline materials. As an application, a plane-strain forging process is simulated and the effects of the initial textures on the deformation behavior of the workpiece are examined.

  • PDF

A Study on the Optimal Design of the Brake Tube-End for Automobiles (승용차용 브레이크 Tube-End의 최적설계에 관한 연구)

  • 한규택;박정식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF

A Study on the Die Design for Manufacturing of High Pressure Gas Cylinder (고압가스 용기의 제조를 위한 금형설계에 관한 연구)

  • Choi, Young;Yoon, Ji-Hoon;Park, Yoon-So;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.153-162
    • /
    • 2004
  • This paper describes a research work on the die design for the deep drawing & ironing(D.D.I.) of high pressure gas cylinder. D.D.I die set is large-sized die used in horizontal press, which is usually composed of drawing, and ironing die. Design method of D.D.I. die set is very different from those of conventional cold forging die set.. Out diameter of the die set is fixed because of press specification and out diameter of the insert should be as small as possible for saving cost of material. In this study, D.D.I die set has been designed to consider those characteristics and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.

An Investigation of Thread Rolling Characteristics of Titanium Micro-Screws according to Die Design Parameters (금형설계 변수에 따른 마이크로 티타늄 나사 전조공정의 성형 특성 고찰)

  • Lee, Ji Eun;Kim, Jong-Bong;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Micro-screws can be defined by their outer diameter of generally less than 1 mm. They are manufactured by head forging and thread rolling processes. In this study, the thread rolling process was numerically analyzed for a micro-screw with a diameter and pitch of 0.8 and 0.2 mm, respectively. Through finite element (FE) analysis, the effects of two design parameters (die gap and chamfer height) on the dimensional accuracy were investigated. Three combinations of chamfer heights were chosen first and the corresponding die gap candidates selected by geometric calculation. FE analyses were performed for each combination and their results indicated that the concave chamfer height should be less than 0.3 mm, while a 10 ?m difference in the die gap might cause degeneration in dimensional accuracy. These results conclude that ultra-high accuracy is required in die fabrication and assemblies to ensure dimensional accuracy in micro-screw manufacturing.

A Study on the Process Planning and Die Design of Cold-Forging Using Personal Computer(I) (퍼스널 컴퓨터에 의한 냉간단조 공정 및 금형설계의 자동화에 관한 연구( I ))

  • 최재찬;김병민;진인태;김형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.712-720
    • /
    • 1988
  • This paper describes some development of computer-aided system called "COLD-FORMING" and "DESIGN-DIE". "COLD-FORMING" is designed for the forming sequence and "DESIGN-DIE" for the die design of press forming rotationally symmetric parts. The computer program developed is used in interactive and written in BASIC. Design rules for process planning and die design are formulated from process limitations, plasticity theory and know-how of experience of the field. "COLD-FORMING" capabilities include (1) analysis of forming sequence and recognition of individual operation involved each step, (2) determination of intermediate shape and dimensions, (3) calculation of forming loads to perform each forming operation and (4) graphic out put for the operation sheet. "DESIGN-DIE" capabilities include (1) optimum die design corresponding to the output of "COLD-FORMING" and (2) graphic output for the die design.of "COLD-FORMING" and (2) graphic output for the die design.ie design.

Transitions in Bronze Technology Observed in Bronze Artifacts Excavated from the Shilla Wang-Gyong (신라왕경 출토 청동유물에서 확인되는 청동기 제작기술의 변천)

  • Jeong, Young-Dong;Park, Jang-Shik
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.267-284
    • /
    • 2004
  • As an initial step to understand the transitions in Korean bronze technology the present study has examined metallurgical microstructures of 8 artifacts excavated from the Silla Wang-Gyong site in Kyongju. Important trends have been found in alloy compositions and also in manufacturing processes. In the design of alloys, the Sn content was apparently changing toward the peritectic point, 22 mass %, of the Cu-Sn phase diagram while the Pb addition was intentionally avoided. This trend in composition was found accompanied by the introduction, subsequent to casting, of such special thermo-mechanical treatments as quenching and forging in artifact manufacture. In addition, the Sn content in alloys containing a significant amount of As was relatively low and no evidence of forging was observed in them. The use of quenching and forging and the rejection of Pb and As from alloys are all necessary requirements if the brittle nature of high Sn alloys is to be overcome in bronze working. This paper will show that the Wang-Gyong era corresponds to that of innovations leading to the technical climax in Korean bronze tradition, which has been maintained up to the present.

Decision making model for introducing Medical information system based on Block chain Technologies (블록체인 기반 의료정보시스템 도입을 위한 의사결정모델)

  • Zheng, Yajun;Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.93-111
    • /
    • 2020
  • Purpose The purpose of this paper is to observe the relative priorities of importances among the modified versions of Block chain system, being based on AHP decision support model which should be also proposed in this paper. Design/methodology/approach Four versions modified from the beginning of Block chain were divided into Public& Permissionless, Private&Permissionless, Public&Permissioned and Private&Permissioned types. Five criteria for evaluating the four versions whether the version were suitable for Medical information system were introduced from five factors of Technologies Accept Model, which were Security, Availability, Variety, Reliability and Economical efficiency. We designed Decision support model based on AHP which would select the best alternative version suitable for introducing the Block chain technology into the medical information systems. We established the objective of the AHP model into finding the best choice among the four modified versions. First low layer of the model contains the five factors which consisted of Security, Availability, Variety, Reliability and Economical efficiency. Second low layer of the model contains the four modified versions which consisted Public&Permissionless, Private&Permissionless, Public&Permissioned and Private& Permissioned types. The structural questionnaire based on the AHP decision support model was designed and used to survey experts of medical areas. The collected data by the question investigation was analyzed by AHP analysis technique. Findings The importance priority of Security was highest among five factors of Technologies Accept Mode in the first layer. The importance priority of Private&Permissioned type was highest among four modified versions of Block chain technologies in second low layer. The second importance priority was Private&Permissionless type. The strong point of Private&Permissioned type is to be able to protect personal information and have faster processing speeds. The advantage of Private& Permissionless type is to be also able to protect personal information as well as from forging and altering transaction data. We recognized that it should be necessary to develop new Block chain technologies that would enable to have faster processing speeds as well as from forging and altering transaction data.

Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets (알루미늄 합금과 고장력 강판 접합을 위한 헬리컬 SPR의 설계)

  • Kim, W.Y.;Kim, D.B.;Park, J.G.;Kim, D.H.;Kim, K.H.;Lee, I.H.;Cho, H.Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.735-742
    • /
    • 2014
  • A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.