• Title/Summary/Keyword: Forging Design

Search Result 445, Processing Time 0.019 seconds

Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network (신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계)

  • 김동환;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

Process Design of Pulley for Automobile Airconditoner in Cold Forging (자동차 냉방기용 내부 풀리의 냉간 단조 공정 설계)

  • 김동진;정덕진;김병민;최재찬
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.199-206
    • /
    • 1997
  • The inner pulley is an automobile component used as air conditioner clutch assembly. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and outer one, and to make uniform the hardness distribution in the forged product. In industry, the design of forging processes is performed based on experience-oriented technology, that is, designers experience and expensive trial and error. Using the rigid-plastic finite element simulations. we design the optimal process conditions, which has a preforming operation. Also the final product configuration of forging has to be designed again in view of metal flow involved in the operation, derived from the finite element simulations. The forged pulley is investigated by checking the hardness distribution and it is noted that distribution has improved to be even and high enough for industrial application.

  • PDF

A Study on the Manufacturing Technology of a Folding Blind Rivet (폴딩 블라인드 리벳의 제조기술에 관한 연구)

  • Byun, Hong-Seok;Kim, Young-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • In this study, the manufacturing technology of a folding blind rivet was developed through finite element analysis(FEA). Numerical simulations of the folding blind rivet used to join two components have been performed with the finite element method for the forging process design. To minimize the process and manufacture the folding blind rivet without defects, a variety of design rules were proposed. From the results of FEA applied process design rules, an optimal six-stage process was proposed. The finite element simulation results such as shape of the forged rivet, strain distribution and forging load were investigated for the usefulness of the forging process of the blind rivet. In addition, the experiments have been implemented and their results were compared to the analytic results.

Near Net Shape Design of an Exhaust CAM for Vessel Engine (선박엔진용 배기캠의 정밀성형설계)

  • Yeom, J.T.;Kim, J.H.;Kim, J.H.;Hong, J.K.;Lee, J.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The hot forming process of an exhaust CAM for vessel engine was designed by finite element(FE) simulation and experimental analysis. An aim of process design was to achieve the near-net shaped CAM forgings by hot forging process. Based on the compression test results of the low alloy steel, power dissipation map was generated using the the dynamic materials model(DMM). From the map, the initial heating temperature was determined as 1200oC. FE analysis was simulated to predict the formation of forging defects and deformed shape with different forging designs. Optimum process design suggested in this work was made by comparing with the CAM for vessel engine manufactured by actual forging process.

Process Design of Cold Forging for Automobile Air Conditioner Pulley using a Solid Billet (중실소재를 이용한 자동차 냉방기용 풀리의 냉간 단조 공정 설계)

  • 정덕진;김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.329-337
    • /
    • 1997
  • Forging of an inner pulley for compressor clutch assembly of car air conditioner is investigated in this study. In cold forging of inner pulley, the design requirements are to keep the same height of the inner rib and the outer one, and to make uniform the hardness distribution in the forged product. Using the rigid-plastic finite element simulation. we design the optimal process conditions, which has a performing operation. Also the final product configuration of forging has to be designed again in view of the metal flow involved in the operation, derived from the finite element simulations. The forged pulley is investigated by checking the hardness distribution and it is noted that the distribution has improved to be even and high enough for industrial application.

  • PDF

The Optimal Preform Design for Automotive Differential Bevel Gear (자동차용 차동 베벨기어의 최적 예비성형체 설계)

  • 김병민;김동환;정구섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. The aspect ratio and chamfer length are considered as design parameters to achieve adequate metal distribution in the finish forging operation. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing the preform shape in metal forming process.

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Forging process design of cup shaped large forging using finite element method (유한요소해석을 통한 컵형상 대형단조품의 성형공법 설계)

  • Kang, Jong Hun;Kim, Hyun Jun;Lee, Hyoung Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.729-734
    • /
    • 2015
  • This research developed a new deep-bore, cup-shape, large forging process by combining die forging and free forging methods. In the proposed process, a preform for cup-shape large forging is produced by die forging, and a product with a deep bore is finally manufactured using an open die forging method, which is generally produced using a backward extrusion process. Finite element analysis results showed a higher effective strain distribution with a smaller forging load using the proposed method compared to the backward extrusion method. The production of a prototype with good internal quality using a small press capacity verified the proposed method.

Optimization of a Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow tines (6시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Eom J. G.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.798-803
    • /
    • 2005
  • In this paper, the six sigma scheme together with the rigid-viscoplastic finite element method is employed to obtain the optimal metal flow lines of a hot forging according to the six sigma processes, i.e., five steps such as define, measure, analyze, improve and control. Each step is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator is used for analysis of the metal flow lines of the hot forging, manufactured by a hot press forging machine, under various conditions of major factors determined at each step. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are then used to find an optimal process and the optimal process with die is devised and tested. The comparison between the required metal flow lines and the experiments shows that the approach is effective for optimal process design in hot forging considering metal flow lines.

A Study on Cold Forging Process Design of a Terminal Pin for High-Voltage Capacitors (고압콘덴서용 단자핀의 냉간단조 공정설계에 관한 연구)

  • 김홍석;윤재웅;손일헌
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.586-593
    • /
    • 2004
  • A terminal pin, which is a part of high-voltage capacitors, has a plate-shaped head section with thickness of 0.8mm. The current manufacturing process, in which the head section is welded on the body part, has given wide deviations of part qualities such as geometrical accuracy, mechanical strength and electrical stability. In this study, a cold forging process sequence was designed in order to produce the terminal pin as one piece. The plate-shaped head section requires an upsetting in the lateral direction of a cylindrical billet, which is followed by a blanking process. The deformed geometry of the lateral upsetting, however, could not be predicted precisely by intuition since metal flows of an axial and a lateral direction of the cylindrical billet would occur simultaneously. Therefore, in this study, three dimensional finite element analyses were applied to the lateral upsetting process in order to determine a proper diameter and height of the cylindrical billet. Once the geometry of the initial billet was determined, intermediate forging processes were designed by applying cold forging guidelines and the designed process sequence was verified by two dimensional finite element analysis. In addition, cold forging tryouts were conducted by using a die set, which was manufactured based on the designed process and finally we found that the part qualities were improved by the proposed cold forging process.