• 제목/요약/키워드: Forging Defect

검색결과 49건 처리시간 0.021초

공정 Al-Si 합금의 개량처리와 주단조에 의한 조직변화에 관한 연구 (Study on the Microstructural Changes with Modification and Cast-forging in Eutectic Al-Si Alloys)

  • 윤지현;설은철;박승민;이광학
    • 한국주조공학회지
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2002
  • Recently, many studies have been carried out to process on the purpose of lightness in a transport parts because of the saving energy, the environmental problem. The cast-forging process can be expected to lower costs without decreasing the mechanical properties. So, the finest microstructure is needed to get for applying the cast-forging process with Al-Si alloy because the microstructure affects to the cast-forging process. For refinement treatment of eutectic Si and Al solid-solution phase, Sr and TiB were added in Al-Si alloys. The finest microstructure could be observed when 0.075 wt.%Sr and 0.1 wt.%TiB were added respectively. In this case, tensile strength and elongation much more increased than as casting. After high temperature deformation simulation test with grain refinement specimens was carried out, about 70N per unit $area(mm^2)$ of specimen was confirmed. After hot forging, tensile strength and elongation were increased. It was considered because casting defect was removed by compressive working.

아공정 Al-Si 합금의 개량처리와 주단조에 의한 조직변화에 관한 연구 (A study on the Microstructural Changes with Modification and Cast-forging in Hypoeutectic Al-Si Alloys)

  • 윤지현;설은철;김억수;이광학
    • 한국주조공학회지
    • /
    • 제22권1호
    • /
    • pp.26-34
    • /
    • 2002
  • For application of cast-forging process with Al-Si alloys, casting experiments are carried out by adding Sr and TiB to Al-Si alloys for grain refinement treatment. We experimented on the mechanical properties according to microstructural changes, forging ability test and also investigated the mechanical properties after forging. The finest microstructure could be observed respectively when 0.05 wt.%Sr and 0.1 wt.%TiB were added. In this case, tensile strength and elongation increased much more than as casting. After high temperature deformation simulation test with grain refinement specimens was carried out, about 60N per unit $area(mm^2)$ of specimen was confirmed. After hot forging, tensile strength and elongation were increased. It was considered that casting defect was removed by compressive working.

자동차용 피스톤-핀의 유동결함 방지를 위한 공정설계 (Process Design to Prevent Flow Defect of Piston-Pin for Automobile)

  • 김동진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.155-158
    • /
    • 2000
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In cold forging of piston-pin Lapping defect a kind of flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The finite element simulations are applied to analyze the flow defect. This study proposed processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experiments for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

Thixoforging을 이용한 중공형 금속복합재료 부품의 성형공정에 있어서 결함예측 (Defect Prediction in Part Fabrication Process of Metal Matrix Composites by Thixoforging Process)

  • 윤성원;김병민;강충길
    • 소성∙가공
    • /
    • 제12권2호
    • /
    • pp.102-109
    • /
    • 2003
  • In the manufacturing process of metal matrix composites parts, thixoforging is one of the most effective forming processes. The major purpose of the current study is to provide the proper conditions such as the die shape, the forging velocity, the forging time, the forging pressure and reinforcement injection velocity and pressure on various defects in thixoforged cylinder liner, filling tests were performed by MAGMA S/W. In order to evaluate the effectiveness of the calculated conditions which is given by computer aided engineering, A357, A380 and SiC$_{p}$/A380 cylind~5$mu extrm{m}$r liner were fabricated under the calculated conditions. SiC$_{p}$/A380 composite billets were fabricated by both the mechanical stirring and electrical magnetic stirring process. Incase fo SiC$_{p}$/A380 composite cylinder liner, reinforcement distribution and effect of reinforcement(SiC$_{p}$) content(10~20 vol. %)and size(5.5~14${\mu}{\textrm}{m}$) on the mechanical properties were investigatedstigated.

유한요소법을 이용한 disk-brake piston의 공정설계 (Application of FEM to the Forming Process of Disk-Brake Piston)

  • 황병복;이호용
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.178-188
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic FEM has been applied to simulate the conventional four stage manufacturing processes, which include deep drawing and forging process. Simulation of one stage process from a selected stock to the final product shape is performed for generating information on additional requirements for metal flow. Two stage forming processes with different punch corner and nose geometries are also simulated to identify the possible best solutions. Finally, the best manufacturing process is selected, which is using a hemispherical punch int he deep drawing process.

  • PDF

열처리 공정이 대형 주단조품의 조직변화에 미치는 영향 (Microstructure change of large cast-forged product by heat treatment conditions)

  • 이명원;이영선;이승욱;이동희;김상식;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.102-106
    • /
    • 2009
  • Thermal energy control is a important factor in a large size casting and forging. Good control of thermal energy makes characteristics and defect of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment by FEM simulation. Also, changes of temperature and microstructure for forged shell were predicted. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.

  • PDF

복합단조 공정을 적용한 Outer Support Ring 개발 (Development of Outer Support Ring using Complex Forging Processes)

  • 주원홍;박성영
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.653-659
    • /
    • 2017
  • 본 연구에서는 원웨이 클러치의 핵심 부품인 Outer Support Ring의 복합 단조 공정을 개발하고, 시제품을 제작하여 평가하였다. 기존 공정 즉, 열간 단조와 MCT 가공 공정은 과대한 소재 절삭량과 가공 시간이 길다는 단점이 있다. 이를 극복하고자 열간 단조를 통하여 형상을 구현하고, 냉간 단조를 통하여 정밀한 부품을 성형하였다. 최소한의 가공만을 적용하는 복합 단조 공정을 개발하였다. 상용 소프트웨어인 Deform-3D를 이용하여 단조 해석을 수행하였다. 해석 결과를 바탕으로 열간 단조 및 냉간 단조 공정을 설계하였고, 실제 금형 및 시제품을 제작하였다. 제작한 시제품은 경도, 표면 조도, 내부 결함, 단류선 검사 등의 평가를 수행하였다. 평가결과 특이한 문제점은 발견되지 않았으며, 양산적용이 가능할 것으로 판단된다. 복합 단조를 통하여 열간 단조와 MCT 가공 공정 대비 약 27%의 소재를 절감할 수 있었다. 또한 제품 개당 생산 시간은 약 2.15배 단축되었다. 본 연구를 통하여 원가 절감이 가능한 공정 및 금형 설계 기술을 확립하였고, 이를 통하여 관련 자동차 부품 생산에도 긍정적인 효과가 있을 것으로 기대된다.

유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발 (Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control)

  • 박종남;박태준;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구 (Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile)

  • 박종남;박태준;김동환;김병민
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

재료이용율 향상을 위한 피스톤 크라운 성형공정 연구 (Study on forming Process of Piston Crown Using Near Net Shaping Technology)

  • 최호준;최석우;윤덕재;정한수;최익준;백동규;최성규;박용복;임성주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF