• Title/Summary/Keyword: Forge welded bar

Search Result 2, Processing Time 0.015 seconds

Material Characteristics of Forge Welded Bar and By-product through Reproduction Experiment to the Refining and Forge Welding Process (정련·단접 공정 재현 실험을 통해 생산된 소재 및 부산물의 재료학적 특성)

  • Oh, Min Jee;Cho, Hyun Kyung;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • This study analyzed the influence of folding time on the forge welded bar and hammer scale produced using the traditional refining and forge welding reproduction experiment. In the case of the forge welded bar, increasing the forging time decreased the percentage of impurities and porosity from 26.09% to 1.8%. Additionally, the hardness increased by an average of 36.88 HV. In other words, the microstructure gradually became more precise. For the hammer scale, the amount of T Fe increased with forging time. X-ray diffraction analysis revealed the presence of quartz, fayalite, $w{\ddot{u}stite$, and magnetite. The amount of quartz decreased as the forging time increased. In addition, as the forging time increased, the granular $w{\ddot{u}stite$ changed into a cohesive, long, white band. The results provide information on the characteristics of the forge welded bar and hammer scale produced in the refining and forging process. This information can be used as technical data for ancient steel making processes as well as for future technological systems.

A Comparative Study on the Surface Patterns Applied to the Traditional Refining and Forge Welding Process Using Iron (철을 이용한 전통 정련·단접 과정 적용 소재별 표면무늬 금속학적 비교 연구)

  • Oh, Min Jee;Cho, Sung Mo;Cho, Nam Chul;Han, Jeong Wook
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.440-452
    • /
    • 2019
  • This research has analyzed SI, the traditional steel, and SIHS(SI + HS), SICS(SI + CS), and SINiS(SI + NiS), the materials that were produced through welding and reprocessing three modern steel- HS, CS, and NiS- that have different carbon content. The purpose of the analyzation was to improve the definition of the multi-layered pattern that appears in the forging process. In observing modified structures on the commissures of three modern steel that have different carbon component to the SI, SINiS produced the most significant multi-layered pattern as well as the excellent welding quality. The excellent welding quality was due to the content of nickel which helped the forge welding process with other materials. There was no significant difference in crystal grain per materials, and SICS showed the highest hardness. At the measurement of EPMA for commissures of the materials, SINiS showed the highest definition of the multi-layered pattern due to the nickel and carbon content. The results above showed that the carbon steel with nickel content is the best material for the most definite multi-layered pattern, expressed from the multi-layered structure which is a characteristic of traditional forge welding technology. It is expected that the result of this research can be utilized as the technical data in further researches regarding the relics excavated from ancient welding process and their multi-layered structure and patterns.