• Title/Summary/Keyword: Forest topsoil

Search Result 43, Processing Time 0.028 seconds

Compare Physicochemical Properties of Topsoil from Forest Ecosystems Damage patterns (산림생태계 훼손 유형별 표토의 이화학적 특성 비교)

  • Kim, Won-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.923-928
    • /
    • 2015
  • This study was carried out to evaluate the physicochemical properties of different types of topsoil in forest ecosystems by damage pattern and analyse the possibility of using the topsoil as a planting ground construction material. There were 72 samples from 36 sites of 12 damaged areas and 36 sites of 12 non-damaged areas. The results showed that the physicochemical properties of topsoil from non-damaged areas of forest ecosystems were on an average clay loam~sandy loam in soil texture, showing $0.95{\sim}1.10Mg/m^3$ in soil bulk density, $35.7{\sim}44.0m^3/m^3$ in solid phase, 56.0~64.3 in soil porosity, 8.4~35.8% in aggregate stability, 5~13 mm in soil hardness, 5.3~6.1 in pH, 0.14~0.65 dS/m in EC, 0.28~0.42% in T-N, $14{\sim}22cmol^+/kg$ in CEC, $0.15{\sim}0.31cmol^+/kg$ in Ex. $K^+$, $2.07{\sim}2.84cmol^+/kg$ in Ex. $Ca^{2+}$, $0.45{\sim}1.97cmol^+/kg$ in Ex. $Mg^{2+}$, 17~96 mg/kg in Av. $P_2O_5$ and 3.2~5.6% in OM. On the other hand, damaged areas were on an average clay loam~loamy sand in soil texture, showing $1.54{\sim}1.75Mg/m^3$ in soil bulk density, $52.8{\sim}58.0m^3/m^3$ in solid phase, 42.0~47.2 in soil porosity, 4.2~22.5% in aggregate stability, 13~25 mm in soil hardness, 4.8~5.5 in pH, 0.13~0.62 dS/m in EC, 0.02~0.12% in T-N, $5{\sim}15cmol^+/kg$ in CEC, $0.11{\sim}0.18cmol^+/kg$ in Ex. $K^+$, $0.45{\sim}2.36cmol^+/kg$ in Ex. $Ca^{2+}$, $0.39{\sim}0.96cmol^+/kg$ in Ex. $Mg^{2+}$, 15~257 mg/kg in Av. $P_2O_5$ and 0.4~2.2% in OM. After conducting a comparison of physicochemical characteristics of non-damaged forest area and damaged areas, it was found that the physicochemical characteristics of damaged areas were more deteriorated compared to that of non-damaged areas. Therefore, it is judged that it is necessary to establish countermeasures for the conservation and management of the damaged areas for topsoil recycling in the future.

Physicochemical Properties of Topsoil Used for River Improvement and Non-Improvement Areas

  • Kim, Won-Tae;Cho, Yong-Hyeon;Yoon, Yong-Han;Kang, Hee-Kyoung;Park, Bong-Ju;Shin, Kyung-Jun;Eo, Yang-Joon;Yoon, Taek-Seong;Jang, Kwang-Eun;Kwak, Moo-Young;Song, Hong-Seon
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1295-1304
    • /
    • 2013
  • This study was carried out to evaluate the physicochemical properties and perform a feasibility analysis of planting material composed of topsoil from river improvement and non-improvement areas. The results showed that the physicochemical properties of topsoil from river improvement areas were on the average sandy loam~loamy sand in soil texture, 5.6~6.8 in pH, 0.01~0.06 dS/m in EC, 0.9~2.1% in OM, 0.02~0.12% in T-N, 8~14 $cmol^+/kg$ in CEC, 0.01~0.08 $cmol^+/kg$ in Ex. $K^+$, 2.55~11.11 $cmol^+/kg$ in Ex. $Ca^{2+}$, 0.34~2.06 $cmol^+/kg$ in Ex. $Mg^{2+}$, and 3~396 mg/kg in Av. $P_2O_5$. And non-improvement areas showed on average sandy clay loam~sand in soil texture, 5.7~6.7 in pH, 0.02~0.08 dS/m in EC, 0.9~4.4% in OM, 0.02~0.23% in T-N, 7~18 $cmol^+/kg$ in CEC, 0.01~0.08 $cmol^+/kg$ in Ex. $K^+$, 3.81~12.67 $cmol^+/kg$ in Ex. $Ca^{2+}$, 0.60~1.95 $cmol^+/kg$ in Ex. $Mg^{2+}$, and 3~171 mg/kg in Av. $P_2O_5$. Meanwhile, the results of an applied valuation of topsoil- based planting were as follows. Ex. $K^+$ levels were low grade in all survey areas. OM was low grade in 12 improvement areas and 11 non-improvement areas. Av. $P_2O_5$ levels were low grade in 10 improvement areas and 10 non-improvement areas. T-N was low grade in six improvement areas and four non-improvement areas. Ex. $Mg^{2+}$ levels were low grade in two improvement areas.

Distribution of $NO_3\;^-,\;SO_4\;^{2-}$ and Heavy Metals in Some Urban-forest Soils of Central Korea (중부 지역 도시 자연녹지 토양중 $NO_3\;^-,\;SO_4\;^{2-}$ 및 중금속 분포)

  • Kim, Kye-Hoon;Park, Soon-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.351-357
    • /
    • 2000
  • This study was carried out to find out characteristics and contamination status of the urban-forest soils. Both topsoil (0-20 cm) and subsoil (40-60 cm) samples were collected from Namsan, Changdeok-palace, Seongjusan and Odaesan (control). The samples were analyzed for physicochemical properties, heavy metal (Cd, Cu, Pb, Zn) and anion $(NO_3\;^-,\;SO_4\;^{2-})$ contents. Soil pH of Odaesan was the highest followed by Namsan, Changdeok-palace and Seongjusan. The anion concentrations of the soil samples were in the order of Namsan, Seongjusan > Changdeok-palace > Odaesan. The relationships between soil pH and the anion concentrations showed highly significant negative correlation, which indicated acidification of soil due to air pollutants such as $NO_3\;^-$ and $SO_4\;^{2-}$ was going on. The heavy metal contents of the soils of urban-forest were higher than those of control. Heavy metal contents in the topsoil were higher than those in the subsoil. Since urban-forest soils were quite vulnerable to acidification and heavy metal accumulation due to chronic exposure to air pollutants such as automobile exhaust, a comprehensive countermeasure not to deteriorate urban-forest ecology must be prepared in the near future.

  • PDF

A Study on Forest Land Classification Using Multivariate Statistical Methods : A Case Study at Mt. Kwanak (다변수통계방법을 이용한 산지분류에 관한 연구)

  • 정순오
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.13 no.1
    • /
    • pp.43-66
    • /
    • 1985
  • Korea needs proper and rational public policies on conservation and use of forest land and other natural resources because of the accelerating expansion of national land developments in recent years. Unfortunately, there is no systematic planning system to support the needs. Generally, forest land use planning needs suitability analysis based on efficient land classification system. The goal of this study was to classify a forest land using multivariate satistical methods. A case study was carried out in winter of 1983 on a mountainous area higher than 100m above sea level located at Mt. Kwanak in Anyang -city, Kyung-gi-do (province). The study area was 19.80 km$^2$wide and was divided into 1, 383 Operational Taxonomic Units (OTU's) by a 120m$\times$120m grid. Fourteen descriptors were identified and quantified for each OTU from existing national land data : elevation, slope, aspect, terrain form, geologic material, surface soil permeability, topsoil type, depth of the solum, soil acidity, forest cover type, stand size class, stand age class, stand density class, and simple forest soil capability class. For this study, a FORTRAN IV program was written for input and output map data, and the computer statistics packages, SPSS and BMD, were used to perform the multivariate statistical analysis. Fourteen variables were analyzed to investigate the characteristics of their fire quench distribution and to estimate the correlation coefficients among them. Principal component analysis was executed to find the dimensions of forest land characteristics, and factor scores were used for proper samples of OTU throughout the study area. In order to develop the classes of forest land classification based on 102 surrogates, cluster and discriminant analyses of principal descriptor variable matrix were undertaken. Results obtained through a series of multivariate statistical analyses were as follows ; 1) Principal component analysis was proved to be a useful tool for data selection and identification of principal descriptor variables which represented the characteristics of forest land and facilitated the selection of samples.

  • PDF

Effects of reforestation approaches, agroforestry and woodlot, on plant community composition, diversity and soil properties in Madhupur Sal forest, Bangladesh

  • Hasan, Mohammad Kamrul;Islam, Md. Tariqul;Akter, Rojina;Roshni, Nasima Akther
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.204-217
    • /
    • 2022
  • Background: Increasing land demands for food production have led to biodiversity loss and land degradation in the Madhupur Sal forest. Reforestation activities such as agroforestry and woodlot plantation support the conservation of diversity, restoration of forest and prevention of soil erosion in degraded natural Sal forest. Knowing about these reforestation activities, this study is needed to compare the species composition, richness, and soil nutrients of these two plantation activities to the natural Sal forest in the degraded Madhupur Sal forest in Bangladesh. Results: The analysis showed that in between the reforestation activities, the highest Shannon-Wiener index (1.79), evenness (0.60) and Simpson's index (0.79) were found in the agroforestry site compared to the woodlot plantation site. On the contrary, the highest species richness (n = 14), tree basal area (19.56 m2 ha-1), Margalef's index (1.96) were recorded in woodlot plantation than in the agroforestry site. We observed that at 0-15 cm depth, soil organic matter (2.39%), total nitrogen (0.14%), available phosphorous (62.67 ㎍ g-1) and exchangeable potassium (0.36 meq/100 g) in agroforestry plots were significantly higher compared to other forest sites. At topsoil (15-30 cm depth), soil organic matter (1.67%) and available phosphorous (21.09 ㎍ g-1) were found to be higher in agroforestry site. Conclusions: Both reforestation approaches improved soil function, although woodlot plantation had the higher species richness. Therefore, plantation activities by the sustainable implementation of these two practices are the best alternative to restore the biodiversity, richness and conserve soil fertility in the Madhupur Sal forest of Bangladesh.

The Change of Soil Animals by Forest Ecosystem Restoration Types (산림생태계 복원유형별 토양동물 변화)

  • Kang, Hyun-Mi;Song, Jae-Tak;Choi, Song-Hyun;Kim, Dong-Hyo
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • In this study, in order to examine the change of soil animals by vegetation restoration types, experimental sites with biotope restoration method, forest topsoil paving method, small diameter trees planting method and multi-layer community planting method were applied and the control site was selected. The naturalness of soil animals was analysed by studying the change of soil animals. It was confirmed that the control site has a high level of the naturalness of soil animals as it includes a mixture of fauna sensitive and insensitive to environment distributed widely over the site. The experimental site with biotope restoration method showed a similar level of the naturalness of soil animals as the control site. Furthermore, the naturalness of soil animals in the experimental sites with small diameter trees planting method and multi-layer community planting method also showed a progressive restoration although the level of the naturalness of soil animals is lower than the experimental site with the biotope restoration method. Therefore, it is confirmed that the experimental site with biotope restoration method shows a faster recovery of soil animal than other sites. This is because this method uses the portion of topsoil and subsoil that were dug from the intact forest during transplantation.

Spatial Modeling of Erosion Prone Areas Using GIS -Focused on the Moyar Sub-Watershed of Western Ghats, India-

  • Malini, Ponnusamy;Park, Ki-Youn;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • Soil erosion is a major problem in the case of forests in hilly terrains. Soil erosion removes the fertile topsoil, making unsuitable for growth and establishment of vegetation. In the present study, erosion prone areas in a forest region situated in the Moyar sub-watershed of Western ghats was identified using GIS with data collected from India. The thematic layers such as forest cover, slope and drainage density were used for analysis. In the erosion prone map, majority of area (48%) was under medium category, and about 35% of area was under high erosion prone category. Very high erosion prone category occupied 7% of the forest area. This erosion prone map would be an ideal spatial data to take up necessary management actions at appropriate places in this watershed to prevent erosion.

  • PDF

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

Relationship between Land-Use Change and Soil Carbon and Nitrogen (토지(土地) 이용(利用) 형태(形態)의 변화(變化)와 토양(土壤) 내(內) 탄소(炭素)와 질소(窒素의 관계(關係))

  • Son, Yowhan;Lee, Sook Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.242-248
    • /
    • 2001
  • Changes in land-use can affect soil organic matter content and fertility. We compared total soil carbon and nitrogen concentrations, soil respiration, and nitrogen availability under three land-use types in central Korea; conversion of old rice field to natural willow-maple (Salix-Acer) forest, conversion of old field to artificial Korean pine (Pines koraiensis) forest, and indigenous oak (Quercus spp.) forest. After 20 years of fallow the area of rice field conversion to forest had higher soil carbon and nitrogen concentrations in the soil depth of 0-10cm and 10-20cm than the areas of field conversion to Korean pine forest and indigenous forest. In general, soil carbon and nitrogen concentrations decreased with soil depth. Organic matter accumulation as a balance of input and decomposition seemed to be higher in the soil of previous rice field, and carbon and nitrogen accumulation was largely confined to the topsoil. Soil respiration rates were greatest at the area of rice field conversion to forest, and appeared to be related to soil carbon and soil moisture. Soil nitrogen availability measured by the ion exchange resin bag method differed significantly among land-use types; soil inorganic nitrogen ($NH_4{^+}+NO_3{^-}$) and ammonium availability were highest in the soil under indigenous oak forest followed by conversion of old field to artificial Korean pine forest and conversion of old field to natural willow-maple forest.

  • PDF

Optimal Amount and Mixture Ratio of Seeding of the Exotic and Native Plants for Slope Revegetation(II) (사면 녹화용 외래초종과 재래 목·초본식물의 적정 파종량 및 혼파비에 관한 연구(II))

  • Jeon, Gi-Seong;Woo, Bo-Myeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.2
    • /
    • pp.43-52
    • /
    • 1999
  • This study was carried out to verify results of the nursery seedbeds. From November of 1997 to September of 1998, the artificial banking slopes in the greenhouse of the College of Agriculture and Life Sciences, Seoul National University were seeded with the mixtures of those species. Most of exotic species showed relatively poor development of root as short as 30cm. Also the green weight of root biomass of the native species was more than two times than that of the exotic species. On the other hand, it was found that the exotic species have relatively well-developed fine roots. Thus, it was concluded that the seed-mixture of the native species with long and thick roots and the exotic species with fine roots be the most effective method for topsoil erosion control on banking-slopes. The artificial rainfall system treatment(30mm/hr, 60mm/hr, 100mm/hr) on $30^{\circ}$ banking-slopes did not cause any significant change in the amount of soil loss by erosion. The root system was best developed in the plot of 1,000 seedlings per square meter and it performed well for soil erosion control. Consequently, in the case of seeding of single herbaceous species without mixing any woody seeds, the expected seedlings were 1,000 to 2,000 per square meter.

  • PDF