• Title/Summary/Keyword: Forest succession

Search Result 328, Processing Time 0.03 seconds

Effects of fire on Vegetation and Soil nutrients in Mt. palgong (팔공산에서 식생과 토양에 미치는 산불의 영향)

  • Sim, Hak-Bo;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_1
    • /
    • pp.465-473
    • /
    • 1998
  • This study was carried out to investigate the developmental process of plant community during the secondary succession and changes of soil properties in the burned areas lapsed 28 years after the forest fire in Mt.Palgong. The forest fire occurred on March, 1969 and the red pine (pinus densiflora) forest and its floor vegetation were burned down. The results are summarized as follows: the floristic composition of burned and unburned areas were composed of 49 and 48 species of vascular plants, respectively. The dominant species based on SDR4 of the burned sites were Lespedeza maximowicxii(87.75), Carex humilis (62.94), Rhododendron schippenbachii(55.78) and Miscanthus sinensis var.purpurascens (51.94). In contrast, Pinus densiflora (81.17), Quercus serrata (53.58)m Carex humilis (53.11) and Miscanthus sinenis var. purpuracens (52.42) were dominant in the unburned area. The biological spectra showed the $H-D_1-R_5-e$ type in both areas. The indices of similarity (CCs) between the two areas were 0.80. Degree of succession (DS) was 734 in the burned area and 809 in the unburned area. The species diversity (H) and evenness indices (e) in the burned and unburned areas were 2.05, 2.13 and 0.53, 0.55, respectively. Dominance index (C) in the burned and unburned areas were 0.30 and 0.32, respectively. Soil properties such as soil pH, content of organic matter, total nitrogen, total carbon, exchangeable potassium, sodium, calcium, and magnesium in burned area were comparatively higher than those of unburned area. Monthly changes of soil properties were of little significance except for some cases. These results suggest that there was relationship between trend of vegetation recovery and the changes of soil properties after the forest fire. Mixed forestation of fire-resistant species and nitrogen fixation species will be effective for reforestation after the forest fire.

  • PDF

The Determination and Prediction of Pine to Oak Forest Succession in Sugadaira, Central Japan

  • Jun, Kato;Hayashi, Ichiroku
    • The Korean Journal of Ecology
    • /
    • v.26 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • In order to analyze the succession process from a pine forest to an oak forest, the tree growth of Pinus densiflora and Quercus mongolica ssp. crispula was monitored in a permanent quadrat for 23 years. The measurements were carried out for the stem diameter (DBH) of Pinus densiflora between 1977 and 1999 and for the height of Quercus mongolica ssp. crispula saplings between 1998 and 2000. The floristic composition and the locations of the individual P. densiflora and Q. mongolica ssp. crispula trees and saplings in the quadrat were recorded. P densiflora and Q. mongolica ssp. crispula individuals were randomly distributed within the quadrat. The relative growth rates (RGR) of DBH in P. densiflora were 0.085 $yr^{-1}$ for large trees and 0.056 $yr^{-1}$ for small trees in 1977. The RGR of height for Q. mongolica ssp. crispula was 0.122 $yr^{-1}$. The growth curve for DBH of P. densiflora was approximated by the logistic equation: $$DBH(t) = 30 {[1+1.16exp(-0.13 t)]}^{-1}$$ where DBH (t) the DBH (cm) in year t and t is the number of years since 1977. The growth in height of P. densiflora and Q. mongolica ssp. crispula was described by following equations: $$H (t) = 20.2 {[1+0.407exp(-0.137 t)]}^{-1} (P. densiflora)$$ $$H (t) = 30 {[1+20.7exp(-0.122 t)}^{-1} (Q. mongolica ssp. crispula)$$ Where H (t) is the tree height (m) in year t and t is the number of years since 1977 in P. densiflora and 1998 in Q. mongolica ssp. crispula. With these equations we predicted that the height of Q. mongolica ssp. crispula increases from 2 m in 1999 to 20 m in 2029. Therefore, Q. mongolica ssp. crispula and P. densiflora will be approximately the same height in 2029. The years required for succession from a pine forest to an oak forest are expected 33 with the range between 23 and 44 years.

Vegetation of Chiaksan National Park in Gangwon, Korea (치악산국립공원의 식생)

  • Song, Hong-Seon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.4
    • /
    • pp.356-365
    • /
    • 2007
  • This study was conducted to evaluate the changed vegetational community structure according to vegetational succession in Chiaksan National Park of Korea by applying ordination and classification method of floristic composition along with the actual vegetation by correlation. As for the ratio of actual vegetation, Mongolian oak forest(33.1%) was the highest, followed by mixed forest(16.2%), Japanese larch forest(15.6%), deciduous broad-leaved forest(14.7%), red pine forest(11.1%), Korean pine forest(2.3%) and Pitch pine forest(0.1%), respectively. The vegetation was classified into Acer pseudosieboidianum-Quercus mongolica community, Cornus controversa-Carpinus cordata community, Quercus sonata community, Pinus densiflora community and afforestation. The Acer pseudosieboldianum-Quercus mongolica community-a subordinately ranked community-was divided into Carpinus laxiflora-Sassa borealis community, Fraxinus rhynchophylla community and Symplocos chinensis for. pilosa-Carex siderosticta community. The results of community classification using by ordination and classification method of floristic composition were similar to each other. The vegetational succession, with the combination of Quercus mongolica, Acer pseudosieboldianum and Rhododendron schlippenbachii, was predicted to form a climax forest from above the hillside.

Successional Trends and Vegetation Types in the Baramjae Area of Baekdudaegan (백두대간 바람재일대 식생유형 및 천이경향)

  • Kim, Ji-Dong;Lee, Jun-Woo;Park, Byeong-Joo;Lee, Hye Jung;Lee, Dong-Hyuk;Heo, Tae-Im;Byeon, Jun-Gi;Ahn, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • The purpose of this study examined the succession by vegetation type after forest ecosystem restoration in the Baramjae area. Vegetation of the Baramjae area was classified using a survey of 81 sites from May to October 2019. The vegetation type was classified as Pinus densiflora community group with both Quercus mongolica community and P. densiflora typical community. The group unit was further classified as the Quercus dentata typical subgroup, Salix koreensis subgroup, and Q. mongolica typical subgroup. Such as Q. mongolica, Quercus variavilis in vegetation unit 1, Q. mongolica, Q. dentata in vegetation unit 2, P. densiflora in vegetation unit 3 and S. koreensis in vegetation unit 4 were shown a high importance value. The difference in species by vertical layer is explained by sere. Based on the vegetation type classification system, Detrended Correspondence Analysis was conducted to observe the trend of succession. Since restoration, vegetation unit 1 and vegetation unit 2 were considered to have developed the most extensive vegetation. In vegetation unit 2 and vegetation unit 4, many of the species found were in the early vegetation development in S. koreensis subgroup. Accordingly, vegetation in the Baramjae area can be categorized as a stepwise succession.

Vegetation Succession and Rate of Topsoil Development on Shallow Landslide Scars of Sedimentary Rock Slope Covered by Volcanic Ash and Pumice, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Kim, Suk-Woo;Jang, Su-Jin;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • In this study, vegetation succession and the rate of consequent topsoil development were investigated in shallow landslide scars of sedimentary rock slopes covered by volcanic ashes and pumice in Kagoshima prefecture, Japan. Seven shallow landslide scars of different ages were selected as study areas. In the initial period after the occurrence of a shallow landslide, deciduous broad-leaved trees such as Mallotus japonicus or Callicarpa mollis were occupied in the areas. Approximately 30 years after the landslide, evergreen broad-leaved trees such as Cinnamomum japonicum invaded in the areas, already existed present deciduous broad-leaved trees. After 50 years, the summit of the canopy comprised evergreen broad-leaved trees such as Castanopsis cuspidata var. sieboldii and Machilus thunbergii. Moreover, the diversity of vegetation invading the site reached the maximum after 15 years, followed by a decrease and stability in the number of trees. The total basal areas under vegetation increased with time. It was concluded that the vegetation community reaches the climax stage approximately 50 years after the occurrence of a shallow landslide in the study areas, in terms of the Fisher-Williams index of diversity (${\alpha}$) and the prevalence of evergreen broad-leaved trees. Moreover, according to the results of topsoil measurement in the study areas, the topsoil was formed at the rate of 0.31 cm/year. The development of topsoil usually functions to improve the multi-faceted functions of a forest. However, when the increased depth of topsoil exceeds the stability threshold, the conditions for a shallow landslide occurrence are satisfied. Therefore, we indicated to control the depth of topsoil and strengthen its resistance by forest management in order to restrain the occurrence of shallow landslides.

Forest Type Classification and Successional Trends in the Natural Forest of Mt. Deogyu (덕유산 일대 천연림의 산림형 분류와 천이경향)

  • Hwang, Kwang Mo;Chung, Sang Hoon;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • This study was carried out to classify the current forest cover types and to propose the successional trends in the natural forest of Mt. Deogyu. The vegetation data were collected by the point-centered quarter method. The forest cover types were classified by various multivariate statistical analysis methods such as cluster analysis, indicator species analysis and multiple discriminant analysis. This forests were classified into five forest types by the species composition of upper layer and topographic positions: Quercus mongolica forest in the ridge, Fraxinus mandushurica-F. rhynchophylla-Cornus controversa forest and F. mandushurica forest in the valley, the Q. serrata - Pinus densiflora - Q. mongolica forest and P. densiflora forest in the low-slope. As a result of the forest successional trends depending on ecological and environmental characteristics in each forest type, the current forest types were expected that the forest succession would be proceeded toward Q. mongolica forest, F. mandshurica forest, mixed mesophytic forest, and oak-Carpinus laxiflora forest.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

The Vegetation and Ecological Characteristics of Warm Temperate Forest in Dalma Mountain, Haenam (해남 달마산 상록활엽수림 식생과 생태적 특성)

  • Cho, Ji-Woong;Lee, Kye-Han
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.181-193
    • /
    • 2022
  • The study was conducted to provide basic data for stable forest management according to climate change by identifying the ecological characteristics of Mt. Dalma warm temperate forest. 30 survey plots were established for vegetation structure analysis, and communities which classified by applying TWINSPAN analysis and DCA analysis techniques. Four plant communities were subdivided into Quercus acuta-Eurya japonica community, Quercus acuta community, Quercus salicina-Camellia japonica community, and Quercus acuta-Camellia japonica community. The tree layers were dominated by Quercus acuta and Quercus salicina, and the subtree layers were dominated by Camellia japonica and Eurya japonica, and the Sasa borealis. The species diversity index were in the range of 0.849 to 0.969, and the degree of Evenness index were 0.514 to 0.569, and the similarity index were 59.57 to 75.47%. The species composition in the community indicated that the deciduous broad-leaved and coniferous trees have already been eliminated in competition with evergreen broad-leaved trees. Tree species with good cold resistance such as Quercus acuta and Quercus salicina were dominant species under current climatic conditions, but the dominant species might be changed to more shade-tolerance evergreen broad-leaved through the succession.

A Study on Plant Succession Stages of Highway Cut-slope - In case study on Joongbu-highway - (고속도로(高速道路) 절토(切土)비탈면의 식생천이과정(植生遷移過程)에 관(關)한 연구(硏究) - 중부고속도로(中部高速道路)를 중심(中心)으로 -)

  • Woo, Bo-Myeong;Kim, Nam-Choon;Kim, Kyung-Hoon;Jeon, Gi-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.347-359
    • /
    • 1996
  • This study was carried out to find the plant succession stage on highway cut-slopes. In order to analyze succession stage, plant survey with belt transect method was carried out in 1989 and 1995 at Joongbu-highway cut-slopes. The results could be summarized as follows ; The mean plant coverage of cut-slope was 78.3%. Plant coverage of Lower part area was higher than that of upper part area. Pioneer herb species on cut-slope were Miscanthus spp., Arundinella spp., Artemisia spp. etc., and pioneer woody species were Rubus crataegifolius, Robinia pseudoacacia, Pueraria thunbergiana, Pinus spp. etc. Also, among the introduced turf grasses, Eragrostis curvula is the pioneer species. Due to short of maintenance works, Zoysia japonica which has been planted by sodding work was found to decrease or diminish gradually. The ratio of pioneer stage plants, domestic and introduced herb species, seems to decrease, while the ratio of woody species which are advanced stage plants seems to increase. Maintenance works are needed to management and monitoring of plant succession on cut-slope, and use of herb and woody species will be effective.

  • PDF

Secondary succession and species diversity of pinus densiflora forest after fire (산화후 소나무림의 이차천이와 종다양성)

  • Cho, Young-Ho;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.337-344
    • /
    • 1992
  • A study on the secondary succession and species diversity was conducted at burned sites of which pinus densiflora forest and its floor vegetation was almost destroyed by the forest first in the mts. todok, sansong and palgong from 1977 to 1986. The changes of vegetation during period the year to 11th after fire occurred miscanthus sinensis var. purpurascens $\rightarrow$ miscanthus sinensis var. purpurascens-lespedeza cyrtobotyra $\rightarrow$ lespedeza cyrtobotyra $\rightarrow$ lespedeza cyrtobotyra-quercus serrata community. The biological spectra based on $SDR_3$(%) and SP(%) were $H-D_1-R_5-e$ types. The species diversity generally decrease from miscanthus to lespedeza stage and reached minimum at stage of lespedeza, and after that a litter increase for lespedeza-quercus stage. The species distribution curves showed a decrease from miscanthus to lespedeza stage and slight increase at lespedeza-quercus stage in evenness.

  • PDF