• Title/Summary/Keyword: Forest fires

Search Result 246, Processing Time 0.031 seconds

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

A New Forest Fire Detection Algorithm using Outlier Detection Method on Regression Analysis between Surface temperature and NDVI

  • Huh, Yong;Byun, Young-Gi;Son, Jeong-Hoon;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.574-577
    • /
    • 2006
  • In this paper, we developed a forest fire detection algorithm which uses a regression function between NDVI and land surface temperature. Previous detection algorithms use the land surface temperature as a main factor to discriminate fire pixels from non-fire pixels. These algorithms assume that the surface temperatures of non-fire pixels are intrinsically analogous and obey Gaussian normal distribution, regardless of land surface types and conditions. And the temperature thresholds for detecting fire pixels are derived from the statistical distribution of non-fire pixels’ temperature using heuristic methods. This assumption makes the temperature distribution of non-fire pixels very diverse and sometimes slightly overlapped with that of fire pixel. So, sometimes there occur omission errors in the cases of small fires. To ease such problem somewhat, we separated non-fire pixels into each land cover type by clustering algorithm and calculated the residuals between the temperature of a pixel under examination whether fire pixel or not and estimated temperature of the pixel using the linear regression between surface temperature and NDVI. As a result, this algorithm could modify the temperature threshold considering land types and conditions and showed improved detection accuracy.

  • PDF

Compression Behavior of Wood Stud in Light Framed Wall as Functions of Moisture, Stress and Temperature

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.19-28
    • /
    • 2006
  • There has been considerable research in recent times in light-timber med structures in fires. These structures have included horizontal (floor-like) panels in bending and walls under eccentric and approximately concentric vertical loading. It has been shown that compression properties are the most dominant mechanical properties in affecting structural response of these structures in fire. Compression properties have been obtained by various means as functions of one variable only, temperature. It has always been expected that compression properties would be significantly affected by moisture and stress, as well. However, these variables have been largely ignored to simplify the complex problem of predicting the response of light-timber framed structures in fire. Full-scale experiments on both the panels and walls have demonstrated the high level of significance of moisture and stress for a limited range of conditions. Described in this paper is an overview of these conditions and experiments undertaken to obtain compression properties as a functions of moisture, stress and temperature. The experiments limited temperatures to $20{\sim}100^{\circ}C$. At higher temperatures moisture vaporizes and moisture and stress are less significant. Described also is a creep model for wood at high temperatures.

Forest Fire Response System Using Thermal Imaging Camera (열화상카메라를 이용한 산불 화재 대응시스템 연구)

  • Yoon, Won-Sub;Kim, Yeon-Kyu;Kim, Seung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.927-935
    • /
    • 2021
  • This study conducted a study to improve the problems of the existing fire sensor system. In the case of the existing system, it took more than 3 minutes to detect a fire even at a short distance, making it difficult to extinguish the initial fire. In order to improve these problems, in this study, a fire detection system using an infrared thermal imaging camera was studied. The infrared image-based fire detection system is relatively wide and can detect fire over a long distance, so it has the advantage of being applicable to many fire detection systems. As a result of conducting a field test using the fire detection system, a fire that occurred about 2 km ahead was detected within about 10 seconds. Since the fire detection function of this system can detect within 10 seconds from a distance of about 2 km, it was applicable to forest fires that occur frequently in spring and autumn.

Developing Landscape Analysis Method for Forest Fire Damaged Area Restoration Using Virtual GIS (Virtual GIS를 이용한 산불피해지 복구 경관분석기법 개발)

  • Jo, Myung-Hee;Lee, Myung-Bo;Kim, Joon-Bum;Lim, Ju-Hun;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • In Korea the number of forest fire occurrence and its damaged area have increased drastically and the plans for afforestation such as sound erosion control restoration and forestation have performed to restore for forest fire damaged area. In this study fire resistant forest was developed by selecting fire resistance tree species and applying GIS analysis, considering the characteristic of forest fire and location environment in forest fire damaged area along the east coast. Moreover, it showed the possibility of how spatial information technology such as virtual GIS could be applied during restoring forest fire damaged area and approaching landscape ecology researches. Especially the fire resistant forest was established by using GIS analysis against large scaled forest fires then the best forest arrangement was performed through this fire resistant forest species and 3D modeling in study area. In addition, the forest landscape was established through site index on passing years and then 3D topography and tracking simulation, which is very similar to real world, were constructed by using virtual GIS.

  • PDF

Exploring Countries Eligible for Official Development Assistance Towards Global Forest Conservation Focusing on Green ODA Criteria (Green ODA 요건에 따른 산림 분야 공적개발원조 대상국 탐색)

  • Jang, Eun-Kyung;Choi, Gayoung;Moon, Jooyeon;Jeon, Chulhyun;Choi, Eunho;Choi, Hyung-Soon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.330-344
    • /
    • 2022
  • While deforestation and forest degradation has continued globally, global society has been making efforts to prevent deforestation towards sustainable development. Reforestation in developing countries is linked to Sustainable Development Goals (SDGs) such as climate change mitigation, conservation of biodiversity, eradication of poverty and upholding of human rights. Forest official development assistance (ODA) restores the global forest land, and increases the public benefit. Bilateral forest ODA projects of the Republic of Korea have gradually increased and most of those projects have currently been concentrated in Asian countries. Selecting recipient countries for forest ODA requires more comprehensive approach since the global goals for sustainable development has been widely adapted to ODA strategic plans. We proposed potentially promising countries that are eligible for receiving 'Green ODA' in perspective of economic, social and environment to implement reducing emissions from deforestation and degradation (REDD+), conserving biodiversity, and combating desertification. As a result, the study suggests that forestry cooperation could be expanded from Asian countries more toward South America and African countries. In addition, we emphasized the need to promote convergence and integration with green technology to fundamentally solve the negative impacts of deforestation such as food, energy, water resource shortages, and forest fires. We advocated expanding bilateral ODA in the forestry sector through diversification of project activities, financial sources, and participants. Our study can contribute to the provision of basic information for establishing long-term strategies to expand bilateral cooperation in the forestry sector.

Cause-specific Spatial Point Pattern Analysis of Forest Fire in Korea (우리나라 산불 발생의 원인별 공간적 특성 분석)

  • Kwak, Han-Bin;Lee, Woo-Kyun;Lee, Si-Young;Won, Myung-Soo;Koo, Kyo-Sang;Lee, Byung-Doo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Forest fire occurrence in Korea is highly related to human activities and its spatial distribution shows a strong spatial dependency with cluster pattern. In this study, we analyzed spatial distribution pattern of forest fire with point pattern analysis considering spatial dependency. Distributional pattern was derived from Ripley's K-function according to causes and distances. Spatially clustered intensity was found out using Kernel intensity estimation. As a result, forest fires in Korea show clustered pattern, although the degrees of clustering for each cause are different. Furthermore, spatial clustering pattern can be classified into two groups in terms of degrees of clustering and distance. The first group shows the national-wide cluster pattern related to the human activity near forests, such as human-induced accidental fire in mountain and field incineration. Another group shows localized cluster pattern which is clustered within a short distance. It is associated with the smoker fire, arson, accidental by children. The range of localized clustering was 30 km. Beyond of this range, the patterns of forest fire became random distribution gradually. Kernel intensity analysis showed that the latter group, which have localized cluster pattern, was occurred in near Seoul with high densed population.

Development of Forest Fire Information Management System using GIS (GIS를 이용한 산불 정보관리시스템 개발)

  • Jo, Myung-Hee;Oh, Jeong-Soo;Lee, Si-Young;Jo, Yun-Won;Baek, Seong-Ryul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • Recently our nature of environment has destroyed by a large scaled forest fire. In order to manage these forest fires, forecasting of it is considered as the most important thing. In this paper the database related to forest fire was first built and the efficient forest fire information management system was implemented by using GIS. The main goal of this system is that forest fire managers have GUI(graphic user interface) to analyze data of forest fire effectively and update and retrieve information in database. For the efficient GUI, this system is built in Visual Basic 6.0 and Map Object 2.0. Map Object 2.0 is combined to have various and powerful functionality of GIS analysis as component ware. The Oracle 8.0 is used as DBMS in this study to manage all the spatial and attributed information in database effectively. In the future, this system will play a critical role as making a decision supporting system for scientific forest fire protection and help real time forest fire hazard information offers service for public welfare administration business management.

  • PDF

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.