• Title/Summary/Keyword: Forest degradation

Search Result 274, Processing Time 0.038 seconds

Ultrastructural Observation of Bacterial Attacks on the Waterlogged Archaeological Woods (세균에 의한 수침고목재 피해양태의 초미시구조적 관찰)

  • Kim, Y.S.;Choi, J.H.;Bae, H.J.;Nilsson, T.;Daniel, G.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.3-11
    • /
    • 1992
  • Micromorphological changes in waterlogged archaeological woods excavated from Sweden and Germany were investigated. Especially bacterial attacks on those wood samples under near anaerobic conditions were examined by transmission electron microscopy(TEM). The major feature of micromorphological alterations in those wood samples was the preferential destruction of secondary wood cell wall. In contrast, the middle lamella was not extensively degraded. Three distinct degradation patterns by bacteria were observed : erosion, cavitation and tunnelling bacteria. Erosion and cavitation bacteria attacked primarily $S_2$ layer, whereas tunnelling bacteria made the tunnel-like degradation along the $S_1$ layer. Tunnelling bacteria, in some samples, were able to degrade tunnel in the lignin-rich areas, such as middle lamella, suggesting that these bacteria had the capacity to degrade the lignin. IR spectra indicate that hemicellulose and cellulose in the waterlogged woods were preferentially decomposed. Breakdown of the lignin, on the other hand, was much slower.

  • PDF

Analyzing the Occurrence Trend of Sediment-Related Disasters and Post-Disaster Recovery Cases in Mountain Regions in N orth Korea Based on a Literature Review and Satellite Image Observations (문헌 및 위성영상에 기초한 북한의 산지토사재해 발생경향 및 복구사례 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Suk Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • This study investigated spatiotemporal trends of sediment-related disasters in North Korea from 1960 to 2019 and post-disaster recovery cases based on a literature review and satellite images. Results showed that occurrence status of sediment-related disasters was initially externally reported in 1995 (during the Kim Jongil era); their main triggering factor was heavy summer rainfall. Furthermore, forest degradation rate was positively correlated with population density (R2 = 0.4347, p = 0.02) and occurrence number of sediment-related disasters was relatively high on the west coast region, where both variables showed high values. This indicates that human activity was a major cause of forest degradation and thus, significantly affected sediment-related disasters in mountain regions. Finally, sediment- related disasters due to shallow landslides, debris flow, and slow-moving landslides were observed in undisturbed forest regions and human-impacted forest regions, including terraced fields, opencast mines, forest roads, and post-wildfire areas, via satellite image analysis. These disaster-hit areas remained mostly abandoned without any recovery works, whereas hillside erosion control work (e.g., treeplanting with terracing) or torrent erosion control work (e.g., check dam, debris flow guide bank) were implemented in certain areas. These findings can provide reference information to expand inter-Korean exchange and cooperation in forest rehabilitation and erosion control works of North Korea.

Extract from the branches of Rhamnus yoshinoi exerts anti-cancer effects on human prostate cancer cells through Wnt/β-catenin proteasomal degradation and identification of compounds by GC/MS (짝자래나무[Rhamnus yoshinoi] 가지 추출물에 의한 전립선암세포의 Wnt/β-catenin 분해 유도 활성 및 GC/MS 분석)

  • Kang, Yeongyeong;Eo, Hyun Ji;Kim, Da Som;Park, Youngki;Park, Gwang Hun
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.106-114
    • /
    • 2021
  • We evaluated the anti-cancer activity against human prostate cancer cells and the associated molecular mechanism of extracts from the branches of Rhamnus yoshinoi (RYB). Treatment with RYB suppressed viability of human prostate cancer cells (PC-3) and decreased protein levels of both β-catenin and T-cell factor 4 (TCF4). This was reflected in reduced TCF4 mRNA, but not decreased β-catenin mRNA. PC-3 cells were pretreated with the proteosome inhibitor MG132 before treatment with RYB, which blocked RYB-mediated down regulation of β-catenin in PC-3 cells, thus confirming that RYB promotes the proteasomal degradation of β-catenin. RYB induced β-catenin phosphorylation, and GSK-3β inhibition by LiCl blocked the phosphorylation and proteasomal degradation of β-catenin by RYB. These results suggest that GSK-3β may be an important upstream kinase for RYB-mediated regulation of β-catenin. Finally, GC/MS analysis of RYB identified 18 compounds. Based on these findings, RYB shows potential for development as a therapeutic agent for prostate cancer.

The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia

  • Tolessa, Terefe;Senbeta, Feyera
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • Background: Deforestation and degradation are currently affecting the ecosystem services of forests. Among the ecosystem services affected by deforestation and degradation are the amount of soil organic carbon (SOC) and total nitrogen (TN) stored in forest soils which have greater impacts in global climate change. This study aimed at examining the amount of SOC and TN in the forest fragments which were separated from the continuous tracts of forests of Jibat and Chillimo through fragmentation processes over four decades. Methods: We have sampled soils from 15 forest fragments of Chillimo and Jibat in the central highlands of Ethiopia. The soil samples obtained in two separate soil depths (0-30 and 30-60 cm) were bulked, dried, and sieved for analysis. Results: Our results have shown that the two sites (Jibat and Chillimo forest fragments) differed in their SOC and TN contents. While the values for Jibat were found to be 29.89 Mg/ha of SOC and 2.84 Mg/ha for TN, it was 14. 06 Mg/ha of SOC and 1.40 Mg/ha for TN for Chillimo. When all forest fragment soil samples were bulked together, Jibat site had twice the value of SOC and TN than Chillimo. When disaggregated on the basis of each fragments, there existed differences in SOC (1.86 Mg/ha and 42.15 Mg/ha) and TN (0.24 Mg/ha and 4.23 Mg/ha) values. Among the forest fragments, fragment four ($F_4$) had the highest Relative Soil Improvement Index (RSII) value of 3826.82% and fragment fifteen ($F_{15}$) had the lowest RSII value (726.87%) which indicated that the former had a better quality of soil properties than the latter. Conclusion: SOC and TN differed across sampled fragments and sites. Variations in soil properties are the reflections of inherent soil parent material, aboveground vegetation, human interferences, and other physical factors. Such differences could be very important for identifying intervention measures for restoration and enhancing ecosystem services of those fragments.

Effects of Optical Brightening Agent on the Chemical Degradation Characteristics of Paper Cellulose (형광증백제가 종이 셀룰로오스의 화학적 열화특성에 미치는 영향)

  • Lee, Jae-Hun;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.66-72
    • /
    • 2015
  • This study was conducted to investigate the effects of optical brightening agents (OBA) on the chemical degradation characteristics of paper cellulose during humid heating aging. Three different types of OBAs were applied to a filter paper by dipping it in OBA solutions whose concentrations were controlled to 1% and 2%. The filter papers with an OBA were artificially aged at $80^{\circ}C$ and 65% RH, and the changes in pH of paper and viscosity of cellulose were evaluated. Their functional groups were also analyzed by ATR-FTIR (at-tenuated total reflectance fourier transform infrared spectroscopy). It was found that OBAs influenced the chemical degradation of paper cellulose during humid heating aging. Higher concentration of OBA solutions accelerated the degradation of paper cellulose. Especially, after aging for 12 days, the paper cellulose treated with the tetra-type OBA were the most significantly aged among the three types of OBAs. It was assumed that pH of OBA solutions affected the aging characteristics.

Degradation of Lignosulfonate by Fungal Laccase with Low Molecular Mediators

  • Cho, Nam-Seok;Shin, Woon-Sup;Jeong, Seon-Wha;Leonowicz, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1551-1554
    • /
    • 2004
  • In the presence of laccase, low molecular weight (M.W.) fractions from lignosulfonate (M.W. 97 kD) were produced. By Sephadex column chromatography, four lower M.W. fractions of 9 kD, 1.8 kD, 1 kD and 0.85 kD were identified. The addition of acetovanillone (AV) or acetosyringone (AS) enhanced to the degradation of lignosulfonate with fungal laccase. During this process, there were found new generation of lower M.W. fractions, e.g. approximately 20 kD, 1.8 kD, 1 kD and 0.85 kD for AV, and 20 kD, 3 kD, 1 kD and 0.85 kD for AS, respectively. The quantities of lower M.W. products (especially the fractions of M.W. 1 kD and 0.85 kD) were larger than those in the controls. Also, its degradation became more active in the presence of AS than AV. The presence of AS or AV seems to prevent the re-polymerization of degraded lignosulfonate by the laccase.

Degradation Assessment of Forest Trails in Mt. Jiri Area of Gyeongnam Province (경남권역 지리산 둘레길 훼손 실태 분석)

  • Lim, Hong-Geun;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.255-263
    • /
    • 2013
  • This study was carried out to evaluate degradation status of forest trails by analysis of soil physical and chemical properties in Mt. Jiri area of Gyeongnam province. Soil texture was loam in the forest area and sandy loam in the forest trails. Soil bulk density was significantly higher (P<0.05) in the forest trails (1.15 g/$cm^3$) than in the forest area (1.00 g/$cm^3$). The rates of pore space were lower in the forest trails (56.6%) than in the forest area (62.4%). Soil moisture content was significantly different (P>0.05) between the forest trails (13.3%) and the forest area (11.3%) Soil strength was higher at 5 cm of soil depth than at 10 cm of soil depth. It indicates that soil compaction by visitors could be affected at 5 cm of soil depth. Soil strength over 30 cm of soil depth was not significantly different between the forest trails and the forest areas. The content of organic matter, total nitrogen, available phosphorus, and exchangeable cations were lower in the forest trails compared with the optimum content of forest soils because of soil erosion with increasing visitors. These results indicate that it needs a counterplan to protect forest trails from overcrowded visitors.

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Characterization of Degradation features and Degradative Products of Poplar Wood(Populus alba${\times}$glandulosa) by Flow Type-Supercritical Water Treatment (초임계수에 의한 현사시 목분의 분해특성 및 분해산물 분석)

  • Choi Joon-Weon;Lim Hyun-Jin;Han Kyu Sung;Kang Ha-Young;Choi Don-Ha
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • In this study, the possibility of sugar conversion of poplar wood(Populus $alba{\times}rglandulosa$) and their degradation features of major wood components were characterized using flow type supercritical water treatment system. The finely ground poplar wood meals were treated for 2min. under subcritical condition$(23MPa,\;275^{\circ}C\;and\;325^{\circ}C)$ and supercritical condition $(23MPa,\;375^{\circ}C\;and\;415^{\circ}C)$. respectively. The degradation products of poplar wood meals appeared brownish colors, including undegraded solids. Increasing the temperature of the system, the degradation rate of poplar wood meals was accelerated and reached up to $94\%\;at\;375^{\circ}C$. The total amount of reducing sugars in degradation products determined by DNS method were gradually lowered when the temperature condition became severe. This indicated that the reducing sugars formed were further degraded to kan derivatives by certain side reaction such as pyrolysis under higher temperature. In order to characterize degradation features of lignin, the degradation products were extracted with ethylacetate and the organic phases were subjected to GC-MS analysis. Main lignin degradation products were identified to vanillin, guaiacol, syrinaldehyde, 4-prophenyl syringol and dihydrosinapyl alcohol, which could be formed by the cleavage of ether linkages in lignin polymers by high temperature condition.

  • PDF