• Title/Summary/Keyword: Forest canopy density

Search Result 88, Processing Time 0.03 seconds

REMOTELY SENSED INVESTIGATIONS OF FOREST CANOPY DENSITY DYNAMIC IN TROPIC COMBINE WITH LANDSAT AND FIELD MEASUREMENT DATA

  • Panta, Menaka;Kim, Hye-Hyun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.102-105
    • /
    • 2006
  • Forest canopy density is an essentially important for maintaining the diversify flora and fauna in the tropic. But, the natural and human disturbances have an influence over the inconsistency of forest canopy density. So, forest canopy density (FCD) has been threatened in the tropic since a decade. The objective of this study was to examine the dynamics change of the forest canopy density in tropical forest Chitwan, Nepal combine with field survey and remote sensing data. The field survey data of 2001 such as canopy cover percentage, dbh so on and some human disturbances were used. Similarly, Landsat TM 1988 and ETM+ 2001 have also used to predict the dynamic changes of the FCD over the period. Moreover, nonparametric Kruskal- Wallis test has performed for the validation of the results. Data analysis revealed that very few factors i.e. the number of trees, path, and fire had realized statistically significance at P=<0.05. Therefore we concluded that detail analysis could be needed incorporate with additional socioeconomic, climatic, biophysical and institutional factors for the better understanding of the forest canopy dynamic in particular location.

  • PDF

Study on the Relationship between the Forest Canopy Closure and Hyperspectral Signatures

  • Lin, Chinsu;Chang, Chein-I
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.72-74
    • /
    • 2003
  • Forest canopy density is an ideal representative of the forest habitat situations. It can directly or indirectly depict the canopy structure and gap size in the forestland, thus could be applied to assessment of wildlife’s diversit y. Since population survey of vegetation and wildlife diversities is a key issue for sustainable forest ecosystem management, many research efforts have been focused on forest canopy density using multispectral data in the last two decades. Unfortunately, prediction of canopy density using large scaling remote sensing data remains a challenging issue. Due to recent advances in hyperspectral image sensors hyperspectral imagery is now available for environmental monitoring. In this paper, we conduct experiments to monitor complicated environments of forestland that can be captured by using hyperspectral imagery and further be analyzed to test a prediction model of forest canopy density. The results show that 95% of canopy density could be well described by using 2 difference vegetation indices (DVIs), which are difference of blue and green reflectances rband_100-rband_150 and difference of 2 short wave infrared reflectancse rband_406-rband_410 With the wavelengths of band no. 100, 150, 406, and 410 specified by 462.39 nm, 534.40 nm, 918.22 nm and 924.41 nm respectively.

  • PDF

Spatial Relationship of Suburb, Road and River in respect to Forest Canopy Density Change Using GIS and RS

  • Pantal, Menaka;Kim, Kye-Hyun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.257-270
    • /
    • 2005
  • Many studies states that improperly uprising of infrastructure may cause leading the forest degradation and canopy reduction in many tropical forest of Asian countries. Other studies revealed that habitat destruction and fragmentation, edge effects, exotic species invasions, pollution are provoked by roads. Similarly, environmental effects of road construction in forests are problematic. Similarly, many researches have been indicated that roads have a far greater impact on forests than simply allowing greater access for human use. Moreover, people using river as means of transportation hence illegal logging and felling cause canopy depletion in many countries. Therefore, it is important to comprehend the study about spatial relation of road, river and suburb followed by temporal change of forest canopy phenomena. This study also tried to examine the effect of road, river and suburb in forest canopy density change of Terai forest of Nepal from you 1988 to 2001. So, Landsat TM88, 92 and 001 and FCD (Forest Canopy Density) mapper were used to perform the spatial .elation of canopy density change. ILWIS (Integrated Land and Water Information System) which is GIS software and compatible with remote sensing data was used to execute analysis and visualize the results. Study found that influence of distance to suburb and river had statistically significance influenced in canopy change. Though road also influenced canopy density much but didn't show a statistical relation. It can be concluded from this research that understanding of spatial relation of factors respect with canopy change is quite complex phenomena unless detail analysis of surrounding environment. Hence, it is better to carry out comprehensive analysis with other additional factors such as biophysical, anthropogenic, social, and institutional factors for proper approach of their effect on canopy change.

  • PDF

Spatio-temporal Dynamic Alteration of Forest Canopy Density based on Site Associated Factor: View from Tropical Forest of Nepal

  • Panta, Menaka;Kim, Kye-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.313-323
    • /
    • 2006
  • Forest Canopy Density is a dynamic process mediated by various natural and anthropogenic factors. It can be changed over time and locations in the same forest type and landscape. However, human dimensions are considered as the primary force of landscape change and subsequent forest canopy loss in tropical regions of the world. Many studies have been indicated that roads have a far greater impact on forests than simply allowing access for human use. Similarly, rivers have been used as means of transportation, hence illegal logging and felling further deplete forest canopy density. The main objective of this study was to investigate the spatio-temporal dynamic alterations of Forest Canopy Density (FCD) across with site associated factors such as biophysical, physical and human interferences in tropical region of Nepal from 1988 to 2001. Landsat TM and ETM+ of 1988 and 2001 were used to assess the spatial and temporal dynamic alterations of FCD. This analysis revealed that distance to human settlements at P=<0.01, rivers, human interferences (path and fire) and species composition had a statistically significance at P=<0.05 level. However, other factors did not show any significant relation. So, we concluded that understanding of dynamic alterations of FCD with respect to factors was quite complex phenomena. Other surrounding environment could also playa significant role. A comprehensive analysis could be required to understand such complexities. Therefore, additional factors such as climatic, biophysical, social, and institutional with respect to spatio-temporal variability should be considered for the better understanding of canopy dynamic.

Forest Canopy Density Estimation Using Airborne Hyperspectral Data

  • Kwon, Tae-Hyub;Lee, Woo-Kyun;Kwak, Doo-Ahn;Park, Tae-Jin;Lee, Jong-Yoel;Hong, Suk-Young;Guishan, Cui;Kim, So-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.297-305
    • /
    • 2012
  • This study was performed to estimate forest canopy density (FCD) using airborne hyperspectral data acquired in the Independence Hall of Korea in central Korea. The airborne hyperspectral data were obtained with 36 narrow spectrum ranges of visible (Red, Green, and Blue) and near infrared spectrum (NIR) scope. The FCD mapping model developed by the International Tropical Timber Organization (ITTO) uses vegetation index (VI), bare soil index (BI), shadow index (SI), and temperature index (TI) for estimating FCD. Vegetation density (VD) was calculated through the integration of VI and BI, and scaled shadow index (SSI) was extracted from SI after the detection of black soil by TI. Finally, the FCD was estimated with VD and SSI. For the estimation of FCD in this study, VI and SI were extracted from hyperspectral data. But BI and TI were not available from hyperspectral data. Hyperspectral data makes the numerous combination of each band for calculating VI and SI. Therefore, the principal component analysis (PCA) was performed to find which band combinations are explanatory. This study showed that forest canopy density can be efficiently estimated with the help of airborne hyperspectral data. Our result showed that most forest area had 60 ~ 80% canopy density. On the other hand, there was little area of 10 ~ 20% canopy density forest.

Analysis of Forest Structure Using LiDAR Data - A Case Study of Forest in Namchon-Dong, Osan - (LiDAR 데이터를 이용한 산림구조 분석 - 오산시 남촌동의 산림을 대상으로 -)

  • Lee, Dong-Kun;Ryu, Ji-Eun;Kim, Eun-Young;Jeon, Seong-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.279-288
    • /
    • 2008
  • Vertical forest distribution is one of the important factors to understand various ecological mechanism such as succession, disturbance and environmental effects. LiDAR data provide information, both the horizontal and vertical distribution of forest structure. The laser scanner survey provided a point cloud, in which the x, y, and z coordinates of the points are known. The objectives of this study were 1) to analyze factors of forest structure such as individual tree isolation, tree height, canopy closure and tree density using LiDAR data and 2) to compare the forest structure between outer and interior forest. The paper conducted to extract the individual tree using watershed algorithm and to interpolate using the first return of LiDAR data for yielding digital surface model (DSM). The results of the study show characters of edge such as more isolated individual trees, higher density, lower canopy closure, and lower tree height than those of interior forest. LiDAR data is to be useful for analyzing of forest structure. Further study should be undertaken with species for more accurate results.

Estimation of Canopy Fuel Characteristics for Pinus densiflora Stands Using Diameter Distribution Models: Forest Managed Stands and Unmanaged Stands (직경분포모형을 이용한 소나무림의 수관연료특성 예측: 산림시업지 임분과 비시업지 임분에서)

  • Lee, Sun Joo;Kim, Sung Yong;Lee, Byung Doo;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.412-421
    • /
    • 2018
  • The objective of this study was to analyze the effects of forest management activities on canopy fuel characteristics for Pinus densiflora stands in South Korea. We used 1,085 managed stands data and 349 unmanaged stands data of the National Forest Inventory for this study, and it was estimated by using the Weibull function for the growth of stand and canopy fuel characteristics. Comparing the canopy fuel characteristics for the managed stands and unmanaged stands shows that the average canopy fuel load is about 14% higher than that of managed stands, and the canopy bulk density is also approximately 16% higher. The results of comparing growth projections for 40 years, 50 years and 60 years with the Weibull function are as follows: Over time, managed stands was predicted the maximum number of medium and large class diameter, while unmanaged stands was predicted maximum number of small and medium class diameter. From a fire fuel perspective, unmanaged stands are predicted to be of the type small class diameter and high density, which is a good condition for crown fire. In addition, Canopy fuel load, Canopy bulk density is relatively higher than managed stands, indicating that the possibility of high crown fire hazard.

Generation of DEM Data Under Forest Canopy Using Airborne Lidar

  • Woo Choong-Shik;Kim Tae-Guen;Shin Jung-Il;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.512-514
    • /
    • 2005
  • Accurate DEM surface of forest floor is very important to extract any meaningful information regarding forest stand structure, such as tree heights, stand density, crown morphology, and biomass. In airborne lidar data processing, DEM data of forest floor is mostly generated by interpolating those elevation points obtained from last laser returns. In this study, we try to analyze the property of the last laser return under relatively dense forest canopy. Airborne laser data were obtained over the study area in relatively dense pine plantation forest. Two DEM data were generated by using all the points in the last laser returns and using only those points after removing non-ground points. From the preliminary analysis on these DEM data, we found that more than half of points among the last laser returns are actually hit from canopy, branches, and understory vegetation that should be removed before generating the surface DEM data.

  • PDF

Assessment of Canopy Fuel Characteristics for Five Major Coniferous Species in Korea (우리나라 주요 침엽수종의 수관층 연료특성 평가)

  • Kim, Sungyong;Jang, Mina;Lee, Byungdoo;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The objective of this study was to assess the canopy fuel characteristics of five major coniferous species in Korea. This study was also developed allometric equations for the canopy fuel load and canopy base height of the major coniferous species using the allomeric equations of biomass developed by the Korea Forest Research Institute and the data from the $5^{th}$ National Forest Inventory. Among the major coniferous fuel types, Pinus koraiensis stands had the highest mean canopy bulk density, 0.34 kg/$m^3$, followed by Gangwon region Pinus densiflora stands 0.28 kg/$m^3$, Pinus thunbergii stands 0.24 kg/$m^3$, Pinus rigida stands 0.15 kg/$m^3$, Central region Pinus densiflora stands 0.12 kg/$m^3$ and Larix leptolepis stands 0.09 kg/$m^3$. The adjusted multiple coefficient of determination of the developed models ranged from 0.6321 to 0.9950 for canopy fuel load and 0.6390 to 0.8539 for canopy base height.

Effects of Forest Tending Works on the Crown Fuel Characteristics of Pinus densiflora S. et Z. Stands in Korea (숲가꾸기 사업이 소나무림의 수관연료특성에 미치는 영향)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Jang, Mina;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The objective of this study was to analyze the changes of crown fire hazard possibility from the effects of forest tending works (FTW) in Pinus densiflora stands in Korea. The study sites were located in Youngju (FTW) and Bonghwa (Control) areas. Ten representative sample trees were destructively felled at each areas to analyze the crown fuel characteristics. The results of this study showed that crown fuel moisture content in Youngju and Bonghwa areas were 103.6% and 104.4%, respectively. The needles and twigs with less than 1cm diameter accounted 50.3% of the total crown fuel load in Youngju area and 62.0% in Bonghwa area. On the other hand, it was observed in Youngju that the canopy bulk density was $0.11kg/m^3$ lower but have 1.3 m higher average canopy base height therefore having a possibility of lower crown fire hazard as compared to Bonghwa that had higher canopy bulk density and lower canopy base height.