• Title/Summary/Keyword: Forest Ecosystem Disturbance

Search Result 59, Processing Time 0.023 seconds

Development of Forest Ecosystem Evaluation Considering Biotope Type (비오톱 유형을 고려한 산림지역 생태계 평가기법 개발)

  • Kim, Jeong Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.3
    • /
    • pp.38-51
    • /
    • 2007
  • The purpose of this study is to analyze of biotope types and to develop assessment for forest ecosystem evaluation method. Vegetation types divided into 27 types. Considering the vegetation types, vegetation structures, DBH, potentials, and disturbance, it was decided to apply 58 biotope types and survey site's biotopes were divided into 24 biotope types. Assessment indicators were naturaliness, diversity, rarity, stability, potential, and disturbance. The areas given the first grade in ecological value included 9.2% of the site's total land. Areas with the second grade accounted for 43.0% of the total land. Areas with the third grade made up 47.8% of the site and mostly they were areas with dominance of fired area and artificial forest. To plan to build naturally-development for Site, there should be plans to conserve areas with the first grades. For the areas with the second, and third grades, plans for ecological land use based on conservation and restoration in terms of securing biodiversity are needed.

Current Status of Invasive Disturbance Species and Its Habitat Characteristics in Urban Forest (도시산림 내 침입교란종 출현현황 및 서식특성 연구)

  • Kim, Eunyoung;Kim, Jiyeon;Song, Wonkyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.93-102
    • /
    • 2016
  • An invasive disturbance species has caused harm to biodiversity and ecosystem. To address the issue, identifying the characteristics of a habitat for invasive disturbance species is considered for forest management. This study analyzed a status of plant species by field survey based on belt transect method in the capital areas and established a predictive model for invasive disturbance species by logistic regression. As results of the study, the number of herb, vine, and invasive disturbance species and a canopy cover of tree would decrease from the forest edge to core areas (p<0.001). The predictive model was derived with variables of altitude, Topographic Wetness Index, distance to forest edge, and canopy cover of tree. It can be useful in estimating the presence or absence of species and predicting its spatial distribution. Further studies are needed to identify the pathway of introduction, spread, and possibility of germination for understanding the status of invasive disturbance species in more depth.

Detection of Forest Ecosystem Disturbance Using Satellite Images and ISODATA (위성영상과 자기조직화 분류기법을 이용한 산림생태계교란 탐지: 우박 피해지와 매미나방 피해지의 사례연구)

  • Kim, Daesun;Kim, Eun-Sook;Lim, Jong-Hwan;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.835-846
    • /
    • 2020
  • Recent severe climate changes and extreme weather events have caused the uncommon types of forest ecosystem disturbances such as hails and gypsy moths. This paper describes the analysis of the forest ecosystem disturbances using ISODATA (Iterative Self-organizing Data Analysis Technique Algorithm) with the RapidEye and Sentinel-2 images, regarding the cases of the hail damages in Hwasun in 2017 and the gypsy moth damages in the Chiak Mountain in 2020. In the case of hail damages, the comparison of the June image of this study and the July field survey of the previous study showed that the damage severity increased from June to July as the drought overlapped after the trees were injured by the hails. In the case of gypsy moths, significant leaf damages were found from the image of June, and the damages were mainly distributed at the low-altitude slope near Wonju City. We made sure that satellite remote sensing is a very effective method to detect various and unusual forest ecosystem disturbances caused by climate change. Also, it is expected that the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024 can be actively utilized to monitor such forest ecosystem disturbances.

Analysis of the Effectiveness of Controlling the Number of Ecosystem Disturbance Fish Species Using the Native Carnivorous Fish Species of Korea

  • Lee, Kwang Yeol;Lee, Han Kyu;Lee, Jae Yong;Choi, Jae Seok
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.66-70
    • /
    • 2018
  • Preliminary investigation and analysis of the effectiveness of controlling the number of ecosystem disturbance fishes residing in Togyo reservoir using the native carnivorous fish species were performed. The data were collected from August 2011 to November 2016. The release of native carnivorous fish species was carried out from the end of May, 2012 to the end of July, 2016, considering fishing ban period of Siniperca scherzeri. The comparative abundance of Lepomis macrochirus was found to be 12.8% in the first year and increased a little bit after releasing the native carnivorous fish. However, it decreased to 3.9% in the last year showing a value of less than 5%. On the other hand, the Micropterus salmoides populations tended to increase after the release of native carnivorous fish species. This seems to be the result of the segregation of habitat by interspecific competition with S. scherzeri. The M. salmoides moved from inside of the lake to edges, and to influent tributaries. Stable isotope analysis showed that Channa argus had the highest levels of nutrition, S. scherzeri and M. salmoides were in competition, and L. macrochirus was used as a feed source for released species. Changes of the fish community in the Togyo reservoir was represented by the rank abundance curves based on the results of the fish fauna. As a result, the fish group in incoming tributaries are somewhat disturbed after the release of the native carnivorous species. Similarly, the fish group in the reservoir were disturbed as well but it's gradually stabilizing afterwards. Therefore, the control of the ecosystem disturbance species using the native carnivorous fish of Korea is effective and helps to stabilize the fish community in the lake.

Evaluation Criteria of Biodiversity in Ecosystem Protected Areas - In Mt. Jiri and Mt. Bukhan National Parks - (생태계 보호지역의 생물다양성 평가지표 선정 및 적용 연구 - 지리산 및 북한산 국립공원을 중심으로 -)

  • Kang, Hae-In;Kang, Kyu-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.114-123
    • /
    • 2018
  • For conservation of biodiversity, we designate and manage the major areas that are habitats of organisms as ecosystem protected areas. It is necessary to evaluate the biodiversity of protected areas relatively in order to establish strategies to protect and secure the biodiversity of protected areas. In this study, we selected evaluation indicators by which we can compare objectively the biodiversity of protected areas corresponding to forest ecosystem, and applied them to Mt. Jiri and Mt. Bukhan National Parks. We reviewed literatures to select evaluation criteria. Frequently mentioned criteria and the structure of the forest which plays an importantrole of forest biodiversity were selected as the evaluation criteria. As the result, the selected evaluation indicators were 7-species diversity, species richness, evenness, rarity, disturbance species, indigenous species, and forest structure. In Mt. Jiri and Mt. Bukhan National Parks, species diversity were 3.492 and 2.943, species richness were 8.998 and 9.793, evenness were 0.849 and 0.680,rarity were 11.976 and 10.783, and disturbance species index were 0.214 and 0.357 respectively. Both national parks had abundant indigenous species and showed various forest physiognomies and stable 4-layer structure. It was found that crown density was higher in Mt. Jiri. Most indicators were implied high biodiversity in Mt. Jiri and Mt. Bukhan national parks.

Forest Floor Biomass, Litterfall and Physico-chemical Properties of Soil along the Anthropogenic Disturbance Regimes in Tropics of Chhattisgarh, India

  • Oraon, P.R.;Singh, Lalji;Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.5
    • /
    • pp.359-375
    • /
    • 2018
  • The long term ecological effects have been reported in natural forest ecosystem due to various anthropogenic disturbances, especially in tropics of the world. The present study was carried out in the sanctuary area of central India to assess the changes on litter biomass, litterfall pattern and soil attributes under different disturbance regimes. The study area includes three forest circles i.e., Bhoramdeo, Jamunpani and Salehwara each comprising three disturbances regimes viz., high, medium and low severity of biotic pressure. A noticeable variation and impact were recorded in different sites. The impact varies significantly from least disturbed sites to highly disturbed sites across the circle and among different disturbances level. The seasonal mean total forest floor biomass across the forest circles varied from 2.18 to $3.30t\;ha^{-1}$. It was found highest under lightly disturbed site and lowest under heavily disturbed site. Total litterfall varied from 5.11 to $7.06t\;ha^{-1}\;yr^{-1}$ across the forest circle. Lowest litterfall was recorded at heavily disturbed site while highest in lightly disturbed site. Annual turnover of litter varied from 69-73% and the turnover time ranged between 1.37-1.45 years. The turn over time was higher for heavily disturbed site and lower for lightly disturbed site. The heavily disturbed site of all the circle showed the sandy loam soil texture, whereas moderately and lightly disturbed site comprised of sandy loam, sandy clay loam and clay soil texture, respectively. The bulk density decreases from heavily disturbed site to lightly disturbed site and the pH of soils ranged from 5.57-6.89 across the circle. Across the circle the total soil nitrogen ranged from 0.12-0.21%, phosphorus from 10.03-24.00 kg and Potassium from $139.88-448.35kg\;ha^{-1}$, respectively. Our results demonstrate that anthropogenic disturbances regime significantly influences forest floors in terms of mass, composition and dynamics along with litterfall rate and soil properties.

Initial Survey on Pit and Mound in Fir Forests in Soraksan Mountain (설악산 전나무림에 나타난 흙 패임과 둔덕에 관한 기초조사)

  • 전상규;윤영일
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.287-294
    • /
    • 2004
  • Pits and mounds created by windthrow have significant impacts on forest ecosystem. In order to establish initial data base, 80 pits and mounds were sampled and surveyed in 5 fir forests in Nae-Sorak Mountain. Characteristics and forms were surveyed and frequency of tree species appearance were surveyed as well. 4.9% of surveyed area (0.4 ha) was pits and mounds in El and E2 areas except old areas where survey was done by estimation. E3 area showed the highest proportion, 11.7% of 0.1 ha of sampling area.

Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia

  • Gebeyehu, Getaneh;Soromessa, Teshome;Bekele, Tesfaye;Teketay, Demel
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.43-60
    • /
    • 2019
  • Background: Tropical montane forests played an important role in the provision of ecosystem services. The intense degradation and deforestation for the need of agricultural land expansion result in a significant decline of forest cover. However, the expansion of agricultural land did not completely destruct natural forests. There remain forests inaccessible for agricultural and grazing purpose. Studies on these forests remained scant, motivating to investigate biomass and soil carbon stocks. Data of biomass and soils were collected in 80 quadrats ($400m^2$) systematically in 5 forests. Biomass and disturbance gradients were determined using allometric equation and disturbance index, respectively. The regression modeling is employed to explore the spatial distribution of carbon stock along disturbance and environmental gradients. Correlation analysis is also employed to identify the relation between site factors and carbon stocks. Results: The result revealed that a total of 1655 individuals with a diameter of ${\geq}5cm$, representing 38 species, were measured in 5 forests. The mean aboveground biomass carbon stocks (AGB CS) and soil organic carbon (SOC) stocks at 5 forests were $191.6{\pm}19.7$ and $149.32{\pm}6.8Mg\;C\;ha^{-1}$, respectively. The AGB CS exhibited significant (P < 0.05) positive correlation with SOC and total nitrogen (TN) stocks, reflecting that biomass seems to be a general predictor of SOCs. AGB CS between highly and least-disturbed forests was significantly different (P < 0.05). This disturbance level equates to a decrease in AGB CS of 36.8% in the highly disturbed compared with the least-disturbed forest. In all forests, dominant species sequestrated more than 58% of carbon. The AGB CS in response to elevation and disturbance index and SOC stocks in response to soil pH attained unimodal pattern. The stand structures, such as canopy cover and basal area, had significant positive relation with AGB CS. Conclusions: Study results confirmed that carbon stocks of studied forests were comparable to carbon stocks of protected forests. The biotic, edaphic, topographic, and disturbance factors played a significant variation in carbon stocks of forests. Further study should be conducted to quantify carbon stocks of herbaceous, litter, and soil microbes to account the role of the whole forest ecosystem.

Landscape Ecological Approaches to the Environmental Impact Assessment (환경영향평가기법의 경관생태학적 접근방안)

  • Choung, Heung-Lak;Hong, Sun-Kee;Lee, Hyun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.73-85
    • /
    • 2005
  • Natural disturbance and environmental pressure on natural ecosystems are gradually increasing, and the cause is significantly related to large-scale environmental pollution, global warming, decreasing biodiversity and habitat fragmentation. Environmental impact assessment(EIA) in Korea has been focused on distribution and composition of fauna and flora as major evaluation aspects in ecosystem assessment. It is well known that those characteristics of flora and fauna strongly depend on characteristics and quality of habitat and ecosystem. However, there is no items to assess habitat and ecosystems of spatial ecological system in EIA. Many countries are trying to develop the EIA items to consider the spatial characteristics of habitat and ecosystem and those ecological dynamics as well as species level. In this stream, landscape ecology is emerging discipline to examine spatial pattern and ecological process within/between habitats and ecosystems. Landscape ecological analysis, as a special tool for ecosystem evaluation, has been appropriately adopted to the EIA system in the advanced countries. This review paper tries to introducing the possibilities of landscape ecological concept into the Korean EIA system.

Characteristics of Vegetation Structure in Chamaecyparis Obtusa Stands (편백림의 식생구조 특성 분석)

  • Park, Seok-Gon;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.907-916
    • /
    • 2015
  • The purpose of this study was to identify characteristics of vegetation structure, vegetation succession, and species diversity of artificially planted Chamaecyparis obtusa (CO) stands. The study was carried out by performing vegetation survey for eight CO stands located in Jeollanam-do Province, Korea. Analysis on vegetation classification and ordinations of the stands was conducted using the data from the vegetation survey, and as a result, the stands were classified into five types of communities. Community I showed a considerably lower index of species diversity when compared to other communities because the canopy of the dominant CO was so highly dense that the low-height vegetation was not able to develop or the low-height vegetation almost disappeared due to elimination of weed trees. Meanwhile, the Community II - IV had relatively higher indices of species diversity because various native tree species mixed with the low-height vegetation and competed with each other in the understory and shrub layers to some degree of stability or in their early stage of vegetation development. Community V, lastly, showed higher use intensity as a recreational forest, thus developing simpler vegetation structure on account of artificial intervention. There was positive correlation between photosynthetically active radiation entering the forest floor, number of observed species and index of species diversity. Such characteristics of vegetation structure in CO stands are closely associated with forest management and prescription for planting reforestation, thinning, and brush cutting in the past. There was a slight difference in vegetation structure and species diversity by communities, based on rotation time of the vegetational succession, process of disturbance frequency and disturbance, development, and maturity by planting CO stands. However, when compared to natural forests, the CO stands showed simpler vegetation structure. Because artificial forests are vulnerable in ecosystem service with lower species diversity, a drive for ecological management is needed for such forests to change into healthy ecosystems that can display functions of public benefit.