• Title, Summary, Keyword: Forecasting of output range

Search Result 5, Processing Time 0.026 seconds

Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System (출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

A Design And Implementation Of Simple Neural Networks System In Turbo Pascal (단순신경회로망의 설계 및 구현)

  • 우원택
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • /
    • pp.1.2-24
    • /
    • 2000
  • The field of neural networks has been a recent surge in activity as a result of progress in developments of efficient training algorithms. For this reason, and coupled with the widespread availability of powerful personal computer hardware for running simulations of networks, there is increasing focus on the potential benefits this field can offer. The neural network may be viewed as an advanced pattern recognition technique and can be applied in many areas such as financial time series forecasting, medical diagnostic expert system and etc.. The intention of this study is to build and implement one simple artificial neural networks hereinafter called ANN. For this purpose, some literature survey was undertaken to understand the structures and algorithms of ANN theoretically. Based on the review of theories about ANN, the system adopted 3-layer back propagation algorithms as its learning algorithm to simulate one case of medical diagnostic model. The adopted ANN algorithm was performed in PC by using turbo PASCAL and many input parameters such as the numbers of layers, the numbers of nodes, the number of cycles for learning, learning rate and momentum term. The system output more or less successful results which nearly agree with goals we assumed. However, the system has some limitations such as the simplicity of the programming structure and the range of parameters it can dealing with. But, this study is useful for understanding general algorithms and applications of ANN system and can be expanded for further refinement for more complex ANN algorithms.

  • PDF

Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand (수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안)

  • Kwon, Kyung-Bin;Park, Hyeon-Gon;Lyu, Jae-Kun;Kim, Yu-Chang;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (I): Theory and Development of Model (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (I): 이론 및 모형의 개발)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.26 no.6B
    • /
    • pp.597-603
    • /
    • 2006
  • The purpose of this study is to improve the short term rainfall forecast skill using neural network model that can deal with the non-linear behavior between satellite data and ground observation, and minimize the flood damage. To overcome the geographical limitation of Korean peninsula and get the long forecast lead time of 3 to 6 hour, the developed rainfall forecast model took satellite imageries and wide range AWS data. The architecture of neural network model is a multi-layer neural network which consists of one input layer, one hidden layer, and one output layer. Neural network is trained using a momentum back propagation algorithm. Flood was estimated using rainfall forecasts. We developed a dynamic flood inundation model which is associated with 1-dimensional flood routing model. Therefore the model can forecast flood aspect in a protected lowland by levee failure of river. In the case of multiple levee breaks at main stream and tributaries, the developed flood inundation model can estimate flood level in a river and inundation level and area in a protected lowland simultaneously.

  • PDF