• Title/Summary/Keyword: Forecasting electrical power

Search Result 236, Processing Time 0.027 seconds

A Study on Centralized Wind Power Forecasting Based on Time Series Models (시계열 모형을 이용한 단기 풍력 단지 출력 지역 통합 예측에 관한 연구)

  • Wi, Young-Min;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.918-922
    • /
    • 2016
  • As the number of wind farms operating has increased, the interest of the central unit commitment and dispatch for wind power has increased as well. Wind power forecast is necessary for effective power system management and operation with high wind power penetrations. This paper presents the centralized wind power forecasting method, which is a forecast to combine all wind farms in the area into one, using time series models. Also, this paper proposes a prediction model modified with wind forecast error compensation. To demonstrate the improvement of wind power forecasting accuracy, the proposed method is compared with persistence model and new reference model which are commonly used as reference in wind power forecasting using Jeju Island data. The results of case studies are presented to show the effectiveness of the proposed wind power forecasting method.

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

Optimal Coefficient Selection of Exponential Smoothing Model in Short Term Load Forecasting on Weekdays (평일 단기전력수요 예측을 위한 최적의 지수평활화 모델 계수 선정)

  • Song, Kyung-Bin;Kwon, Oh-Sung;Park, Jeong-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.149-154
    • /
    • 2013
  • Short term load forecasting for electric power demand is essential for stable power system operation and efficient power market operation. High accuracy of the short term load forecasting can keep the power system more stable and save the power market operation cost. We propose an optimal coefficient selection method for exponential smoothing model in short term load forecasting on weekdays. In order to find the optimal coefficient of exponential smoothing model, load forecasting errors are minimized for actual electric load demand data of last three years. The proposed method are verified by case studies for last three years from 2009 to 2011. The results of case studies show that the average percentage errors of the proposed load forecasting method are improved comparing with errors of the previous methods.

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

Economic Comparison of Wind Power Curtailment and ESS Operation for Mitigating Wind Power Forecasting Error (풍력발전 출력 예측오차 완화를 위한 출력제한운전과 ESS운전의 경제성 비교)

  • Wi, Young-Min;Jo, Hyung-Chul;Lee, Jaehee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.158-164
    • /
    • 2018
  • Wind power forecast is critical for efficient power system operation. However, wind power has high forecasting errors due to uncertainty caused by the climate change. These forecasting errors can have an adverse impact on the power system operation. In order to mitigate the issues caused by the wind power forecasting error, wind power curtailment and energy storage system (ESS) can be introduced in the power system. These methods can affect the economics of wind power resources. Therefore, it is necessary to evaluate the economics of the methods for mitigating the wind power forecasting error. This paper attempts to analyze the economics of wind power curtailment and ESS operation for mitigating wind power forecasting error. Numerical simulation results are presented to show the economic impact of wind power curtailment and ESS operation.

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

A Study on Supplied Forecasting of Short-term Electrical Power using Fuzzy Compensative Algorithm

  • Choo Yeon-Gyu;Lee Kwang-Seok;Kim Hyun-Duck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.779-783
    • /
    • 2006
  • A The estimation of electrical power consumption is becoming more important to supply stabilized electrical power recently. In this paper, we propose a supplied forecasting system of electrical power using Fuzzy Compensative Algorithm to estimate electrical load accurately than the previous. We evaluate a time series of supplied electrical power have the chaotic character using quantitative and qualitative analysis, compose a forecasting system by the maximum change $rate(\alpha)$ of Fuzzy Algorithm and compensative parameter. Simulating it for obtained time series, we can obtain more accurate results than the previous proposed system.

  • PDF

Design of Electric Power Load Forecasting Model based on IT2TSK FLS (IT2TSK 퍼지논리 기반 전력부하 예측 모델 설계에 관한 연구)

  • Bang, Young-Keun;Shim, Jae-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1088-1095
    • /
    • 2015
  • In most cases, the use of electric power is associated with the economic scale of a nation closely. Thus, the electric power load forecasting plays an important role for the national economic plan. This paper deals with the design method for the electric power load forecasting system. In this paper, RCR-MA data processing, which can make the complex properties of the original data form simple, is proposed. Next, IT2TSK FLS, which can reflect the uncertainty of data more than T1TSK FLS, is applied. Consequently, the structural advantage of the proposed system can improve the forecasting accuracy, and is verified by using two types of electric power data.

Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models (다중회귀모형을 이용한 104주 주 최대 전력수요예측)

  • Jung, Hyun-Woo;Kim, Si-Yeon;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

Daily Maximum Electric Load Forecasting for the Next 4 Weeks for Power System Maintenance and Operation (전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측)

  • Jung, Hyun-Woo;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1497-1502
    • /
    • 2014
  • Electric load forecasting is essential for stable electric power supply, efficient operation and management of power systems, and safe operation of power generation systems. The results are utilized in generator preventive maintenance planning and the systemization of power reserve management. Development and improvement of electric load forecasting model is necessary for power system maintenance and operation. This paper proposes daily maximum electric load forecasting methods for the next 4 weeks with a seasonal autoregressive integrated moving average model and an exponential smoothing model. According to the results of forecasting of daily maximum electric load forecasting for the next 4 weeks of March, April, November 2010~2012 using the constructed forecasting models, the seasonal autoregressive integrated moving average model showed an average error rate of 6,66%, 5.26%, 3.61% respectively and the exponential smoothing model showed an average error rate of 3.82%, 4.07%, 3.59% respectively.