• Title/Summary/Keyword: Forecasting Ability

Search Result 106, Processing Time 0.025 seconds

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

A GARCH-MIDAS approach to modelling stock returns

  • Ezekiel NN Nortey;Ruben Agbeli;Godwin Debrah;Theophilus Ansah-Narh;Edmund Fosu Agyemang
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.535-556
    • /
    • 2024
  • Measuring stock market volatility and its determinants is critical for stock market participants, as volatility spillover effects affect corporate performance. This study adopted a novel approach to analysing and implementing GARCH-MIDAS modelling methods. The classical GARCH as a benchmark and the univariate GARCH-MIDAS framework are the GARCH family models whose forecasting outcomes are examined. The outcome of GARCH-MIDAS analyses suggests that inflation, interest rate, exchange rate, and oil price are significant determinants of the volatility of the Johannesburg Stock Market All Share Index. While for Nigeria, the volatility reacts significantly to the exchange rate and oil price. Furthermore, inflation, exchange rate, interest rate, and oil price significantly influence Ghanaian equity volatility, especially for the long-term volatility component. The significant shock of the oil price and exchange rate to volatility is present in all three markets using the generalized autoregressive conditional heteroscedastic-mixed data sampling (GARCH-MIDAS) framework. The GARCH-MIDAS, with a powerful fusion of the GARCH model's volatility-capturing capabilities and the MIDAS approach's ability to handle mixed-frequency data, predicts the volatility for all variables better than the traditional GARCH framework. Incorporating these two techniques provides an innovative and comprehensive approach to modelling stock returns, making it an extremely useful tool for researchers, financial analysts, and investors.

Blast behaviour prediction and simulation methods: A state-of-the-art review

  • Tarek Sharaf;Sara Ismail;Mohamed Elghandour;Ahmed Turk
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.207-226
    • /
    • 2024
  • Recently, the phenomenon of disproportionate structural failure caused by blast load has grown more common in the field of engineering design. Blast-resistant analyses and designs have been developed by many structural techniques and methodologies to forecast the loads produced by a high explosive charge on structures with complicated geometry. These techniques are based on a good understanding of blast phenomena to analyze structures exposed to blast load. This paper provides a current state-of-the-art review of blast prediction and simulation methods to predict the design blast loads that are used to assess the structural response and damage level to an existing or new building. The damage criteria from the general design approach relevant to civil design applications in forecasting blast loads as well as structural system responses will be provided. Identifying the structures' expected damage class would aid in providing extra reinforcing or strengthening for damaged elements to meet the acceptance criteria or minimize damage by a suitable blast mitigation strategy. Based on identifying the damage class expected of a structure subjected to an explosion, blast mitigation strategies could be used to minimize damage and maximize the ability of the structure to function even after the explosion.

A study on the use of a Business Intelligence system : the role of explanations (비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로)

  • Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.155-169
    • /
    • 2014
  • With the rapid advances in technologies, organizations are more likely to depend on information systems in their decision-making processes. Business Intelligence (BI) systems, in particular, have become a mainstay in dealing with complex problems in an organization, partly because a variety of advanced computational methods from statistics, machine learning, and artificial intelligence can be applied to solve business problems such as demand forecasting. In addition to the ability to analyze past and present trends, these predictive analytics capabilities provide huge value to an organization's ability to respond to change in markets, business risks, and customer trends. While the performance effects of BI system use in organization settings have been studied, it has been little discussed on the use of predictive analytics technologies embedded in BI systems for forecasting tasks. Thus, this study aims to find important factors that can help to take advantage of the benefits of advanced technologies of a BI system. More generally, a BI system can be viewed as an advisor, defined as the one that formulates judgments or recommends alternatives and communicates these to the person in the role of the judge, and the information generated by the BI system as advice that a decision maker (judge) can follow. Thus, we refer to the findings from the advice-giving and advice-taking literature, focusing on the role of explanations of the system in users' advice taking. It has been shown that advice discounting could occur when an advisor's reasoning or evidence justifying the advisor's decision is not available. However, the majority of current BI systems merely provide a number, which may influence decision makers in accepting the advice and inferring the quality of advice. We in this study explore the following key factors that can influence users' advice taking within the setting of a BI system: explanations on how the box-office grosses are predicted, types of advisor, i.e., system (data mining technique) or human-based business advice mechanisms such as prediction markets (aggregated human advice) and human advisors (individual human expert advice), users' evaluations of the provided advice, and individual differences in decision-makers. Each subject performs the following four tasks, by going through a series of display screens on the computer. First, given the information of the given movie such as director and genre, the subjects are asked to predict the opening weekend box office of the movie. Second, in light of the information generated by an advisor, the subjects are asked to adjust their original predictions, if they desire to do so. Third, they are asked to evaluate the value of the given information (e.g., perceived usefulness, trust, satisfaction). Lastly, a short survey is conducted to identify individual differences that may affect advice-taking. The results from the experiment show that subjects are more likely to follow system-generated advice than human advice when the advice is provided with an explanation. When the subjects as system users think the information provided by the system is useful, they are also more likely to take the advice. In addition, individual differences affect advice-taking. The subjects with more expertise on advisors or that tend to agree with others adjust their predictions, following the advice. On the other hand, the subjects with more knowledge on movies are less affected by the advice and their final decisions are close to their original predictions. The advances in predictive analytics of a BI system demonstrate a great potential to support increasingly complex business decisions. This study shows how the designs of a BI system can play a role in influencing users' acceptance of the system-generated advice, and the findings provide valuable insights on how to leverage the advanced predictive analytics of the BI system in an organization's forecasting practices.

A case study for the dispersion parameter modification of the Gaussian plume model using linear programming (Linear Programming을 이용한 가우시안 모형의 확산인자 수정에 관한 사례연구)

  • Jeong, Hyo-Joon;Kim, Eun-Han;Suh, Kyung-Suk;Hwang, Won-Tae;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.311-319
    • /
    • 2003
  • We developed a grid-based Gaussian plume model to evaluate tracer release data measured at Young Gwang nuclear site in 1996. Downwind distance was divided into every 10m from 0.1km to 20km, and crosswind distance was divided into every 10m centering released point from -5km to 5km. We determined dispersion factors, ${\sigma}_y\;and\;{\sigma}_z$ using Pasquill-Gifford method computed by atmospheric stability. Forecasting ability of the grid-based Gaussian plume model was better at the 3km away from the source than 8km. We confirmed that dispersion band must be modified if receptor is far away from the source, otherwise P-G method is not appropriate to compute diffusion distance and diffusion strength in case of growing distance. So, we developed an empirical equation using linear programming. An objective function was designed to minimize sum of the absolute value between observed and computed values. As a result of application of the modified dispersion equation, prediction ability was improved rather than P-G method.

Study on Water Stage Prediction Using Hybrid Model of Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘의 결합모형을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.721-731
    • /
    • 2010
  • The rainfall-runoff relationship is very difficult to predict because it is complicate factor affected by many temporal and spatial parameters of the basin. In recent, models which is based on artificial intelligent such as neural network, genetic algorithm fuzzy etc., are frequently used to predict discharge while stochastic or deterministic or empirical models are used in the past. However, the discharge data which are generally used for prediction as training and validation set are often estimated from rating curve which has potential error in its estimation that makes a problem in reliability. Therefore, in this study, water stage is predicted from antecedent rainfall and water stage data for short term using three models of neural network which trained by error back propagation algorithm and optimized by genetic algorithm and training error back propagation after it is optimized by genetic algorithm respectively. As the result, the model optimized by Genetic Algorithm gives the best forecasting ability which is not much decreased as the forecasting time increase. Moreover, the models using stage data only as the input data give better results than the models using precipitation data with stage data.

On Rule-Based Inventory Planning Over New Product Launching Period (신제품 출시 시점의 규칙기반 재고계획에 관한 고찰)

  • Kim, Hyoungtae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.170-179
    • /
    • 2016
  • In this paper we have tackled the outstanding inventory planning problems over new product launching period in a more holistic manner by addressing first the definition of efficient business rules to effectively control and reduce the inventory risks followed by the rigorous explanations on the implementation guide on suggested inventory planning rules. It is not unusual for many companies in the consumer electronics market to make a great effort to reduce the time to launch a new product because the ability to bring out higher performing products in such a short time period greatly increases the probability for them to remain competitive in the high tech market. Among so many newly developed products, those products with new features and technologies appeal to many potential customers while products which fail to win customers by design and prices rapidly disappear in the market. To adapt to this business environment, those companies have been trying to find the answer to minimize the inventory of old products so they can move to next generation products quickly with less obsolete material. In the experimental implementation of our rule-based inventory planning, Company 'S' reduced the inventory cost for the outgoing products as low as 49% of its peak level of its preceding product version in just 5 month after the adoption of rule-based inventory planning process and system. This paper concluded the subject with a suggestion that the best performance of rule-based inventory planning is guaranteed not from one-time campaign of process improvement along with system development but the decision maker's continuing support and attention even without seeing any upcoming business crisis.

A Conceptual Design of Knowledge-based Real-time Cyber-threat Early Warning System (지식기반 실시간 사이버위협 조기 예.경보시스템)

  • Lee, Dong-Hwi;Lee, Sang-Ho;J. Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • The exponential increase of malicious and criminal activities in cyber space is posing serious threat which could destabilize the foundation of modem information society. In particular, unexpected network paralysis or break-down created by the spread of malicious traffic could cause confusion and disorder in a nationwide scale, and unless effective countermeasures against such unexpected attacks are formulated in time, this could develop into a catastrophic condition. As a result, there has been vigorous effort and search to develop a functional state-level cyber-threat early-warning system however, the efforts have not yielded satisfying results or created plausible alternatives to date, due to the insufficiency of the existing system and technical difficulties. The existing cyber-threat forecasting and early-warning depend on the individual experience and ability of security manager whose decision is based on the limited security data collected from ESM (Enterprise Security Management) and TMS (Threat Management System). Consequently, this could result in a disastrous warning failure against a variety of unknown and unpredictable attacks. It is, therefore, the aim of this research to offer a conceptual design for "Knowledge-based Real-Time Cyber-Threat Early-Warning System" in order to counter increasinf threat of malicious and criminal activities in cyber suace, and promote further academic researches into developing a comprehensive real-time cyber-threat early-warning system to counter a variety of potential present and future cyber-attacks.

  • PDF

Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2 (CORDEX-동아시아 2단계 영역 재현실험을 통한 WRF 강수 모의성능 평가)

  • Ahn, Joong-Bae;Choi, Yeon-Woo;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.85-97
    • /
    • 2018
  • This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.