• Title/Summary/Keyword: Forecasting Ability

Search Result 106, Processing Time 0.027 seconds

Current Status and Future Prospect of Plant Disease Forecasting System in Korea (우리 나라 식물병 발생예찰의 현황과 전망)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.84-91
    • /
    • 2002
  • Disease forecasting in Korea was first studied in the Department of Fundamental Research, in the Central Agricultural Technology Institute in Suwon in 1947, where the dispersal of air-borne conidia of blast and brown spot pathogens in rice was examined. Disease forecasting system in Korea is operated based on information obtained from 200 main forecasting plots scattered around country (rice 150, economic crops 50) and 1,403 supplementary observational plots (rice 1,050, others 353) maintained by Korean government. Total number of target crops and diseases in both forecasting plots amount to 30 crops and 104 diseases. Disease development in the forecasting plots is examined by two extension agents specialized in disease forecasting, working in the national Agricul-tural Technology Service Center(ATSC) founded in each city and prefecture. The data obtained by the extension agents are transferred to a central organization, Rural Development Administration (RDA) through an internet-web system for analysis in a nation-wide forecasting program, and forwarded far the Central Forecasting Council consisted of 12 members from administration, university, research institution, meteorology station, and mass media to discuss present situation of disease development and subsequent progress. The council issues a forecasting information message, as a result of analysis, that is announced in public via mass media to 245 agencies including ATSC, who informs to local administration, the related agencies and farmers for implementation of disease control activity. However, in future successful performance of plant disease forecasting system is thought to be securing of excellent extension agents specialized in disease forecasting, elevation of their forecasting ability through continuous trainings, and furnishing of prominent forecasting equipments. Researches in plant disease forecasting in Korea have been concentrated on rice blast, where much information is available, but are substan-tially limited in other diseases. Most of the forecasting researches failed to achieve the continuity of researches on specialized topic, ignoring steady improvement towards practical use. Since disease forecasting loses its value without practicality, more efforts are needed to improve the practicality of the forecasting method in both spatial and temporal aspects. Since significance of disease forecasting is directly related to economic profit, further fore-casting researches should be planned and propelled in relation to fungicide spray scheduling or decision-making of control activities.

A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis (Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.131-137
    • /
    • 2006
  • We have investigated the properties of the Singular Spectrum Analysis (SSA) coupled with the Linear Recurrent Formula which made it possible to complement the parametric time series model. The SSA has been applied to extract the underlying properties of the principal component of hydrologic time series, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, the prediction by the SSA method can be applied to hydrologic time series governed (may be approximately) by the linear recurrent formulae. This study has examined the forecasting ability of the SSA-LRF model. These methods were applied to monthly discharge and water surface level data. These models indicated that two of the time series have good abilities of forecasting, particularly showing promising results during the period of one year. Thus, the method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

Development of the Demand Forecasting and Product Recommendation Method to Support the Small and Medium Distribution Companies based on the Product Recategorization (중소유통기업지원을 위한 상품 카테고리 재분류 기반의 수요예측 및 상품추천 방법론 개발)

  • Sangil Lee;Yeong-WoongYu;Dong-Gil Na
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor's item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.

Forecasting the Long-term Water Demand Using System Dynamics in Seoul (시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측)

  • Kim, Shin-Geol;Pyon, Sin-Suk;Kim, Young-Sang;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 2006
  • Forecasting the long-term water demand is important in the plan of water supply system because the location and capacity of water facilities are decided according to it. To forecast the long-term water demand, the existing method based on lpcd and population has been usually used. But, these days the trend among the variation of water demand has been disappeared, so expressing other variation of it is needed to forecast correct water demand. To accomplish it, we introduced the System Dynamics method to consider total connections of water demand factor. Firstly, the factors connected with water demand were divided into three sectors(water demand, industry, and population sectors), and the connections of factors were set with multiple regression model. And it was compared to existing method. The results are as followings. The correlation efficients are 0.330 in existing model and 0.960 in SD model and MAE are 3.96% in existing model and 1.68% in SD model. So, it is proved that SD model is superior to the existing model. To forecast the long-term water demand, scenarios were made with variations of employment condition, economic condition and consumer price indexes and forecasted water demands in 2012. After all scenarios were performed, the results showed that it was not needed to increase the water supply ability in Seoul.

Export-Import Value Nowcasting Procedure Using Big Data-AIS and Machine Learning Techniques

  • NICKELSON, Jimmy;NOORAENI, Rani;EFLIZA, EFLIZA
    • Asian Journal of Business Environment
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • Purpose: This study aims to investigate whether AIS data can be used as a supporting indicator or as an initial signal to describe Indonesia's export-import conditions in real-time. Research design, data, and methodology: This study performs several stages of data selection to obtain indicators from AIS that truly reflect export-import activities in Indonesia. Also, investigate the potential of AIS indicators in producing forecasts of the value and volume of Indonesian export-import using conventional statistical methods and machine learning techniques. Results: The six preprocessing stages defined in this study filtered AIS data from 661.8 million messages to 73.5 million messages. Seven predictors were formed from the selected AIS data. The AIS indicator can be used to provide an initial signal about Indonesia's import-export activities. Each export or import activity has its own predictor. Conventional statistical methods and machine learning techniques have the same ability both in forecasting Indonesia's exports and imports. Conclusions: Big data AIS can be used as a supporting indicator as a signal of the condition of export-import values in Indonesia. The right method of building indicators can make the data valuable for the performance of the forecasting model.

Predicting Economic Activity via the Yield Spread: Literature Survey and Empirical Evidence in Korea (이자율 스프레드의 경기 예측력: 문헌 서베이 및 한국의 사례 분석)

  • Yun, Jaeho
    • Economic Analysis
    • /
    • v.26 no.3
    • /
    • pp.1-47
    • /
    • 2020
  • This paper surveys research since the 1990s on the ability of the yield spread and its components (i.e., expectation spread and term premium components) for future economic activity, and also conducts an empirical analysis of their forecasting ability using the yield data of Korean government bonds. This paper's survey, particularly for the US, shows that the yield spread has significant predictive power for some macroeconomic variables, but since the mid-1980s, its predictive power seems to have declined, possibly due to stronger inflation targeting. Next, this paper's empirical analysis using Korean data indicates that the yield spread, and the term premium component in particular, has significant predictive power for industrial production (IP) growth, consumer price index growth, and the IP gap. An out-of-sample analysis shows that the prediction equations are unstable over time, and that in predicting IP growth, the yield spread decomposition makes a significant contribution to the prediction of IP growth.

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

Comparison of the BOD Forecasting Ability of the ARIMA model and the Artificial Neural Network Model (ARIMA 모형과 인공신경망모형의 BOD예측력 비교)

  • 정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, the water quality forecast was performed on the BOD of the Chungju Dam using the ARIMA model, which is a nonlinear statistics model, and the artificial neural network model. The monthly data of water quality were collected from 1991 to 2000. The most appropriate ARIMA model for Chungju dam was found to be the multiplicative seasonal ARIMA(1,0,1)(1,0,1)$_{12}$, model. While the artificial neural network model, which is used relatively often in recent days, forecasts new data by the strength of a learned matrix like human neurons. The BOD values were forecasted using the back-propagation algorithm of multi-layer perceptrons in this paper. Artificial neural network model was com- posed of two hidden layers and the node number of each hidden layer was designed fifteen. It was demonstrated that the ARIMA model was more appropriate in terms of changes around the overall average, but the artificial neural net-work model was more appropriate in terms of reflecting the minimum and the maximum values.s.

A Design and Implementation of a Windows Visual System for the Monitoring of Red Tide on the Internet (인터넷을 통한 적조 관측용 윈도우 비주얼 시스템의 설계 및 구현)

  • 박진우;손주영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.817-825
    • /
    • 2003
  • The amount of damage suffered from the red tide occurring at the near shore is increasing rapidly. The Windows visual system discussed in this paper is developed in order to help minimize the damage. The system is focused on the monitoring the coastal environment. and forecasting the red tide occurrence. Although several similar systems are now existing. most of them are based on the web application. which cause the large response time. limited presentation ability of data. and inability of data storing at client side. The Windows visual system described in this paper operates on the Internet to get the ubiquitous access. One of three components of the Windows visual system. client system is developed as a Windows application in order to overcome the weak points of the previous systems. The gathering. analysis, and monitoring of data can be done at real time using the Windows visual system.

Forecasting of Urban Daily Water Demand by Using Backpropagation Algorithm Neural Network (역전파 알고리즘을 이용한 상수도 일일 급수량 예측)

  • Rhee, Kyoung Hoon;Moon, Byoung Seok;Oh, Chang Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 1998
  • The purpose of this study is to establish a method of estimating the daily urban water demend using Backpropagation algorithm is part of ANN(Artificial Neural Network). This method will be used for the development of the efficient management and operations of the water supply facilities. The data used were the daily urban water demend, the population and weather conditions such as treperarture, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. We adjusted the weights of ANN that are iterated the training data patterns. We normalized the non-stationary time series data [-1,+1] to fast converge, and choose the input patterns by statistical methods. We separated the training and checking patterns form input date patterns. The performance of ANN is compared with multiple-regression method. We discussed the representation ability the model building process and the applicability of ANN approach for the daily water demand. ANN provided the reasonable results for time series forecasting.

  • PDF